Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Contract 36651 Volume 2
i so City of Fort Worth, Texas Water Department VILLAGE CREEK WASTEWATER TREATMENT PLANT -� TRINITY RIVER PIPELINE CROSSING �.•.� (PARALLEL SIPHON) ct PROJECT PROJECT P171-070171300040 i SEPTEMBER 2007 fE!ar��� VOLUME 2 OF 2 NN..N.NN.NN.NN.m AMY R. ROBINSON a�eq •.., le �..N�,.............. ......... .......r-1 j .Q i 90271 .j Q 0 ��'*: .4 0 N s``•o?,« QAETCFEJ�1 N:WILI IAMS.�F 'M..N.•r � W �htsi Al.E� Opp 82794 PREPARED BY: q-25•b1 � :Oq cmAL(�zS`07 IN ASSOCIATION WITH: JASTER-QUINTANILLA DALLAS,LLP MULTATECH ENGINEERING INC. 3?-Z1-08 Pr'3:54 If,- CITY OF FORT WORTH VILLAGE CREEK WASTEWATER TREATMENT PLANT TRINITY RIVER PIPELINE CROSSING(PARALLEL SIPHON)PROJECT SPECIFICATIONS TABLE OF CONTENTS VOLUME 2 OF 2 APPENDIX A GEOTECHNICAL ENGINEERING STUDY REPORT APPENDIX B COPOLYMER STOP LOG BID ALLOWANCE LETTER (NOT INCLUDED) APPENDIX C EASEMENTS (NOT INCLUDED) APPENDIX D US CORPS OF ENGINEERS REGIONAL PERMIT (NOT INCLUDED) VC0515TOC TOC-1 09/25/07 APPENDIX A GEOTECHNICAII ENGINEERING STUDY REPORT GREGORY GEOTECHNICAL Geotechnical Enolneering and Consultin ,1001 West 40 Avenue Stillwater, Oklahoma 74074 Phone:*405-747-8200 Fax: 405-747-8201 Report No. R02007 August 26, 2003 CDM 801 Cherry Street, Unit#21, Suite 2340 Fort Worth, Texas 76102 Attention: Ms. Gretchen Williams, P. E. Geotechnical Engineering Study Report Trinity River Siphon Project City of Fort Worth -VCWWTP Fort Worth, Texas Submitted here is the geotechnical engineering study report for the above project. This study was conducted in general accordance with the scope of services contained in our Subcontract Agreement on the referenced project. Geotechnical engineering analyses and recommendations for the proposed siphon pipeline and related facilities are presented in the report. We appreciate the opportunity to provide professional services to CDM and the City of Fort Worth. Please contact us if you have any questions or if we may be of further service at this time. Respectfully Submitted, GREGORY GEOTECHN/CAL Texas Engineering Firm Registration No. F-000308 ' .`� P GARRY H..GREGORY Garry H. Gregory, P.E. ` •••:•••• • •• ••• •••••••� Principal Consultant ,o�,•• •57143 � ��CENSE�•'�4,�� Texas P.E. License No. 57143 "ss; �,��• Copies submitted: (3) CDM, Ms. Gretchen Williams, P. E. Z b ' GREGORY GEOTECHNICAL August 2003 Report No.R02007 TABLE OF CONTENTS Paqe 1.0 INTRODUCTION......................................................................................................... 1-1 2.0 FIELD EXPLORATION................................................................................................2-1 3.0 LABORATORY TESTING............................................................................................3-1 4.0 SUBSURFACE CONDITIONS.....................................................................................4-1 5.0 SLOPE STABILITY ANALYSES....I............................................................................. 5-1 6.0 EARTHWORK.............................................................................................................6-1 7.0 FOUNDATION RECOMMENDATIONS.......................................................................7-1 8.0 EXPANSIVE SOIL CONSIDERATIONS......................................................................8-1 9.0 PIPELINE CONSIDERATIONS ................................................................................... 9-1 10.0 TRENCHING, EMBEDMENT AND BACKFILL........................................................... 10-1 11.0 CONSTRUCTION OBSERVATIONS......................................................................... 11-1 12.0 REPORT CLOSURE..............................:.................................................................. 12-1 REFERENCES............................................................................................................R.1 APPENDIX A Plate PLANOF BORINGS...............................................................................................................A.1 BORING LOG TERMS AND SYMBOLS .................................................................................A.2 BORING LOG GENERAL NOTES..........................................................................................A.3 LOGS OF BORINGS.........................................................................................................A.4-A.8 I GREGORY GEOTECHNICAL August 2003 Report No.R02007 GENERALIZED SUBSURFACE PROFILE..............................................................................A.9 LOG OF BORING B-92-4 (Drilled by Fugro-McClelland in 1992).............Fugro Plates 6a and 6b APPENDIX B Plate SUMMARY OF LABORATORY TEST RESULTS...................................................................6.1 DIRECT SHEAR TEST REPORTS...................................................................... B-DS.1-B-DS.3 TRIAXIAL SHEAR UU TEST REPORTS .........................................................B-UU.1-B-UU.14a UNCONFINED COMPRESSIVE STRENGTH TEST REPORTS......................B-UC.1-B-UC.29a PERCENT SWELL TEST REPORTS ................................................................... B-FS.1-B-FS.5 GRAIN SIZE DISTRIBUTION TEST REPORTS .................................................B-GS.1-B-GS.15 TRIAXIAL COMPRESSION MODULUS TEST REPORTS........................... B-UUM.I-B-UUM.6a APPENDIX C Plate SUMMARY OF SLOPE STABILITY ANALYSES.....................................................................CA SLOPE STABILITY ANALYSES OUTPUT.......................................................................C.2-C.7 MINIMUM BACKFILL ZONE DETAIL......................................................................................C.8 APPENDIX D GUIDE SPECIFICATIONS GSP004-AGGREGATE FILL CLASSIFICATIONS GSP012—GEOTEXTILE— EROSION CONTROL GSP082—COMPACTION GROUTING FOR SOFT OR LOOSE SUBGRADES ii SECTION 1 INTRODUCTION 1.1 Project Description This report presents the results of a geotechnical engineering study for the proposed Trinity River Siphon Project, located at the Village Creek Wastewater Treatment Plant (VCWWTP), Fort Worth, Texas. The site location is shown on Fort Worth MAPSCO 67 R and 68 N (2002 Edition). The overall project will consist of construction of a new Siphon Pipeline crossing the West Fork of the Trinity River at the VCWWTP. The new pipeline will parallel two existing 60-inch diameter siphon pipelines that currently extend from Junction Boxes 'ED' and 'EE' on the east side of the river to Junction Boxes 'D' and 'DD' on the west side of the river. The existing siphon pipelines and junction boxes are shown schematically on Plate A.1. The owner of the project is the City of Fort Worth —Water Department (City), and the design engineer is Camp Dresser and McKee (CDM). Gregory Geotechnical (GREGEO) is providing geotechnical engineering services on the project as a consultant to CDM. During the time of our field exploration, the site consisted of wooded and vegetated areas on the east and west sides of the river, and of existing structures of the VCWWTP, as shown schematically on Plate A.1. The base plan, elevations, and coordinates of the general project site location were provided to GREGEO by CDM. 1.2 Purpose and Scope The purpose of this geotechnical engineering study has been to determine the general subsurface conditions, evaluate the engineering characteristics of the subsurface materials encountered, develop geotechnical recommendations for the proposed Siphon Pipeline and related structures, and provide recommendations for related earthwork. It was recognized at the start of the study that the scope of services was not intended to fully define the variability of the soil types and conditions that could be present over the entire site area. . This report has been prepared for design purposes only, and not for the purpose of providing information to prospective bidders (contractors). While some subsurface information contained in this report may be useful to prospective bidders, this report most likely does not contain all the subsurface information that bidders may desire or require for preparing bids for construction of the project. Therefore, we recommend that bidders be allowed access to the site for making their own GREGORY GEOTECHNICAL 1-1 Report No. R02007 August 2003 SECTION 1 INTRODUCTION subsurface determinations or explorations, as they may deem necessary during the bidding phase of the project. To accomplish its intended purposes, the study has been conducted in the following phases: (1) drilling sample borings to determine the general subsurface conditions and to obtain samples for testing; (2) performing laboratory tests on selected samples to determine pertinent engineering properties of the subsurface materials; and, (3) performing engineering analyses, using the field and laboratory data to develop geotechnical recommendations for the proposed construction. The design is currently in progress and the locations and/or elevations of the various facilities could change. The recommendations contained in this report are based on data supplied by CDM during the preliminary design phase. Once the final design is near completion (80-to 90-percent stage), it is recommended that GREGEO be retained to review those portions of the construction documents pertaining to the geotechnical recommendations, as a means to determine that the recommendations have been interpreted as intended. 1.2.1 Related Studies Furgo-McClelland, Inc. (now known as Fugro South, Inc.) performed a geotechnical study at the VCWWTP in 1992 for Freese and Nichols, Inc. and the City related to proposed levee modifications. The results of that study were presented in Fugro-McClelland report No. 0401-2393, dated October 30, 1992. Boring B-4 from the Fugro study is located on top of the west levee about 150 feet south of our Boring B-1.We used the Fugro Log of Boring No. 4 as reference information, and re-designated it on our Plates A.1 and A.9 as Boring B-92-4 to distinguish it from our Boring 13- 4 in our current study. A copy of the Fugro Log of Boring No. 4 is included at the end of Appendix A. Data from the Fugro report was used with permission from the City and Freese and Nichols, Inc. 1.3 Report Format The text of the report is contained in Sections 1 through 12. A list of references is presented immediately following the end of the report text. The reference list contains both cited references (specifically cited in the text) and general references, which were used during this study, but are not specifically cited in the text. Cited references are numbered according to the report section in which they first appear. All plates and large tables are contained in Appendices GREGORY GEOTECHN/CAL 1-2 Report No. R02007 August 2003 SECTION 1 INTRODUCTION A, B, and C. Guide Specifications are also contained in Appendix D. The alphanumeric plate and table numbers identify the appendix in which they appear. Small tables of less than one page in length may appear in the body of the text and are numbered according to the.section in which they occur. The date (month and year) in the footer of the main text of the report is the issue month and year of the report. Dates on plates and tables in the appendices may be earlier dates that represent the actual date when the particular test, analysis, or similar item was completed or when the plate was printed for the report. Italic and/or bold print is used to call specific attention to some portions of the report. These portions may be recommendations, cautionary statements, or other similar items. However, it should be understood that the italic or bold print is provided as a convenience to the reader, and does not imply that all recommendations, cautionary statements, or other similar items are in italic and/or bold print. All sections of the report should be thoroughly read and studied by the design engineers or other authorized users, to fully understand the intent of the report prior to proceeding to utilize the recommendations. Units used in the report are based on the U.S. Customary (English) units system and may include tons per square foot (tsf), kips (1 kip = 1,000 pounds), kips per square foot (ksf), pounds per square foot (psf), pounds per cubic foot (pcf), pounds per square inch (psi), and other English units as appropriate. GREGORYGEOTECHNICAL 1-3 Report No. R02007 August 2003 SECTION 2 FIELD EXPLORATION 2.1 Field Exploration Subsurface materials at the project site were explored by 5 borings drilled to depths of 10 to 70 feet in the general location of the proposed Siphon Pipeline and Junction Boxes. Borings B-1 and B-2 were drilled on the eastern side of the river and Borings B-3 through B-5 were drilled on the western side of the river. Borings B-2 through B-5 were advanced to a total depth of 70 feet each, and penetrated into the underlying shale a minimum of 17.5 feet and a maximum of 28 feet at the various boring locations. Boring B-1 was originally planned for a total depth of 70 feet, however only a depth of 10 feet could be achieved due to encountering hard objects. During drilling of Boring B-1, a hard object was encountered at a depth of about 7 feet. Since this boring is located near existing pipelines and other structures at the plant site, it was not advisable to attempt to penetrate the hard object. Subsequently, attempts to advance the boring at 9 other locations within about a 20-foot radius also encountered the hard object or layer at depths of about 5 to 10 feet. The hard object appeared to be concrete or perhaps limestone material. City personnel at the VCWWTP site were not aware that any structures or pipelines of that lateral extent were located in the area. However,the plant personnel advised that we should not try to drill through the hard layer in case some unknown utilities or structures are located in the area. It was speculated by plant personnel that a layer of limestone dprap could have been covered over during the construction project when the plant levees were raised in 1992 or 1993. Consequently, the maximum depth achieved for Boring B-1 was 10 feet. The borings were drilled November 2&through the 2e, 2002, with a truck-mounted drill rig, at the approximate locations shown on the Plan of Borings, Plate A:1. The boring locations were selected by GREGEO in conjunction with CDM and the City. The boring logs are included on Plates A.4 through A.8, and boring log terms, symbols, and general notes are provided on Plates A.2 and A.3. A Generalized Subsurface Profile along the boring locations is included on Plate A.9. Note that the Fugro boring (designated as B-92-4) is also included on Plate A.9. Undisturbed samples of cohesive soils were obtained with nominal 3-inch diameter thin-walled (Shelby) tube samplers at selected depths. The tube is hydraulically pushed into the soil by the drilling rig. GREGORY GEOTECHNICAL 2-1 Report No. R02007 August 2003 SECTION 2 FIELD EXPLORATION Disturbed samples of non-cohesive granular or stiff to hard cohesive materials were obtained at selected depths utilizing a nominal 2-inch O.D. split-barrel sampler in conjunction with the Standard Penetration Test(SPT). The SPT utilizes a 140-pound hammer with a free fall of 30 inches, to drive the split-barrel sampler. The number of blows required for 12 inches of penetration after an initial seating interval of 6 inches, is shown as the SPT "N" value at the appropriate depth on the logs of borings, with the blows for each 6-inch interval shown in parentheses immediately below the N values. If less than 6 inches of penetration is achieved, either during or following the seating interval, the test is terminated and the number of inches achieved during the 50 blows is shown on the boring log. Continuous, relatively undisturbed samples were obtained at selected intervals with a nominal 2.25-inch I.D. barrel sampler which operates inside the hollow-stem augers during drilling. This sampler is designated as"CME Tube"on the logs of borings. The unconfined compressive strength of cohesive soil samples was estimated in the field using a calibrated hand (pocket) penetrometer. The results of these tests, in tsf, are listed at the various sample depths in the appropriate column on the logs. The maximum capacity of the penetrometer is 4.5 tsf.When the capacity is exceeded,the value is listed as 4.5+. To evaluate the relative density and consistency of the harder formations, a modified version of the Texas Cone Penetration test was performed at selected locations. Texas Department of Transportation (TxDot)Test Method Tex-132-E specifies driving a 3-inch diameter cone with a 170- pound hammer with a free fall of 24 inches. This results in 340-foot pounds of energy for each blow. This method was modified by utilizing a 140-pound hammer with a free fall of 30 inches. This results in 350-foot pounds of energy for each hammer blow. In relatively soft (soil) materials, the penetrometer cone is driven 12 inches and the number of blows is shown at the various test depths on the boring log. In hard materials (rock or rock-like), the penetrometer cone is driven a total of 100 blows. The penetration in inches for the 100 blows is shown at the various test depths on the boring logs. Continuous coring was performed at selected intervals in rock and rock-like materials using an NW (formerly NX) size, double-tube core barrel. This core barrel produces a nominal 2-inch diameter GREGORY GEOTECHNICAL 2.2 Report No. R02007 August 2003 SECTION 2 FIELD EXPLORATION core sample. The core recovery and Rock Quality Designation (RQD) in percent are included in the appropriate column on the logs of borings. The recovered percent is presented first for each core run and the RQD percent is presented immediately below the recovered percent, in the same column. The recovery percent is the total length of core recovered divided by the length of the core run. The RQD is the sum'of the length of all core pieces from a run that are at least twice as long as the nominal diameter(for the 2-inch diameter core, the length is 4 inches), divided by the length of the core run. The RQD provides an indication of the frequency of secondary features (such as joints and bedding planes) and the general quality of the rock. High RQD values indicate fewer secondary features and good rock quality, whereas low RQD values indicate a relatively larger number of secondary features and poorer rock quality. RQD is often used to help evaluate the in situ mass rock strength, compared to the rock strength indicated by unconfined compressive strength test results on recovered rock cores. The soil and rock samples were extracted from the samplers in the field, logged, and packaged to limit loss of moisture. Ground-water observations during and upon completion of drilling of the borings are shown on the boring logs. Upon completion of the borings, the entire open depths of the boreholes were backfilled with a mixture of bentonite chips and soil cuttings and a minimum 2-foot interval was plugged at the surface with hydrated bentonite chips, followed by approximately 6-inches of soil cuttings. GREGORY GEOTECHN/CAL 2-3 Report No. R02007 August2003 SECTION 3 LABORATORY TESTING 3.1 Laboratory Testing Routine laboratory tests were performed on specimens from selected samples recovered from the borings. These tests included moisture content, liquid and plastic limits, percent passing the No. 200 sieve, and unit dry weight. The results of these tests are shown at the respective depths in the appropriate columns on the boring logs. Grain-size distribution tests were performed on samples from the more granular materials encountered. The results of the grain-size distribution tests are presented on Plates B-GS.1 through B-GS.15. Pocket penetrometer and pocket vane shear readings were also taken on selected samples in the laboratory. These results are shown at the respective depths in the appropriate column on the boring logs. In those instances where both field and laboratory pocket penetrometer tests were performed on the same sample interval, only the laboratory values are listed on the boring logs. A summary of the routine laboratory tests is - presented on Plate B.1. Direct Shear tests were performed on specimens from selected samples to evaluate the drained, effective stress parameters for both peak and residual strength conditions. These Direct Shear Tests included consolidated-drained (CD) tests on 3-specimen series trimmed from the Shelby tube samples from the 9-to 10-foot depth in Boring B-1, and from the 9-to 10-foot depth in Boring B-4. A single-specimen test was also performed on the sand material from the 10- to 11.5-foot interval in Boring B-5. The sand was recompacted in the shear box prior to testing. All specimens were submerged under water, consolidated past the end of primary consolidation, and then sheared in a 2.5-inch diameter shear box at a rate of 0.0003 inches per minute to an ultimate displacement of 0.4 inches (16 % strain). At this shear rate, each specimen requires more than 22 hours to complete the shear stage. The tests were performed in the GREGEO laboratory on a computer-controlled direct shear machine with electronic data acquisition. The results of the CD Direct Shear tests are presented on Plates B-DS.1 through B-DS.3. The peak strength values were taken at the maximum shear stress during the test. The residual strength values were taken as the shear stress at maximum deformation (0.4 inches) or at the lowest post-peak value during the test. Quick-undrained direct shear tests were also performed on selected specimens from the borings. These tests were performed on specimens at natural moisture content and were not submerged GREGORY GEOTECHN/CAL 3-1 Report No. R02007 August 2003 SECTION 3 LABORATORY TESTING during the test. The results of these tests are shown on the logs of borings in the column titled "Undrained Shear Strength UC/UU/DS (KSF)" and are labeled with "ds" to indicate a direct shear test. Triaxial Shear tests were performed on specimens from selected samples to evaluate undrained shear strength properties of the soils and to obtain test data for calculating soil modulus values. The Triaxial Shear Tests included unconsolidated-undrained (UU) tests. The specimens were tested at natural moisture content. The UU Triaxial test results are shown on the boring logs in the column labeled "Undrained Shear Strength UC/UU/DS (KSF). The numerical test results are followed by "uu" to designate a UU Triaxial test. The Triaxial test results are also presented on - Plates B-UU.1 through B-UU.14a. It should be noted that undrained shear strength values may be unrealistically high on soil specimens whose moisture contents were below the plastic limit at the time of testing. These test results are presented for informational purposes only and should not be used for shear strength values for design, since the soil is likely to become fully saturated or experience moisture contents well above the plastic limit during the life of the structures. The moisture contents and plastic limit values are provided on the test reports in Appendix B. l The results from selected UU Triaxial Tests were entered into the Triaxial Compression Modulus Test program to calculate soil modulus values for use in open cut and/or tunnel design. The results of these test calculations are presented on Plates B-UUM.1 through B-UUM.6a. Unconfined compressive strength (UC) tests were performed on selected soil samples and on rock core samples from the shale strata encountered in the borings. The results of the UC tests are shown at the appropriate depths on the boring logs, in the column labeled "Undrained Shear Strength UU/UC (KSF)." The test results are followed by "uc" to designate the type of test. It should be noted that the UC test results are reported on the logs as the undrained shear strength (1/2 unconfined compressive strength). The results of the unconfined compressive _ strength tests, including stress-strain curves, are also presented on Plates B-UC.1 through B- UC.29a. It should be noted that unconfined compressive strength values and undrained shear strength values may be unrealistically high on soil specimens whose moisture contents were below the plastic limit at the time of testing. These test results are presented for informational purposes only and should not be used for shear strength values for design, since the soil is likely to become GREGORY GEOTECHN/CAL 3-2 Report No. R02007 August 2003 SECTION 3 LABORATORY TESTING fully saturated or experience moisture contents well above the plastic limit during the life of the structures. The moisture contents and plastic limit values are provided on the test reports in Appendix B. Percent Swell (Free Swell) tests were performed on 5 specimens from selected samples of the higher-plasticity clays. These tests were performed to help in evaluating the swell potential of soils in the active zone for wet and dry cycles. The results of the swell tests are presented on Plates B- FSA through B-FS.5, and are further discussed in Section 8 of this report. Soil-Box Resistivity tests were performed on specimens from selected intervals in clay soils. The results of these tests are listed at the respective depths on the logs of borings, and are further discussed in Section 6 of this report. The above laboratory tests were performed in general accordance with applicable ASTM or U.S. Army Corps of Engineers procedures, or generally accepted practice. It should be noted that reference to ASTM procedures does not imply that all cross-referenced procedures in ASTM standards have been used, or that all ASTM procedures used have been followed exactly. Only those ASTM procedures and/or portions of procedures, which, in the professional judgment of the geotechnical engineer of record for this report, are applicable, appropriate, and necessary for this particular project, have been used or followed. GREGORY GEOTECHN/CAL 3-3 Report No. R02007 August 2003 SECTION 4 SUBSURFACE CONDITIONS 4.1 Geology Based upon available geologic maps and field observations, the basal formation at the site is the Grayson Marl and Main Street Limestone (undivided) geologic formation, a sedimentary rock unit. The Grayson Marl formation consists mostly of calcareous clay and marl; it tends to be blocky and is yellowish gray and medium gray in color. Very fine-grained fossiliferous layers or inclusions of limestone are found in the upper portions of the deposit. The limestone layers or inclusions may be very hard to extremely hard. The limestone weathers to a yellowish brown. The Grayson Marl, locally referred to as "shale," is listed in the geologic literature as being 60 to 100 feet in thickness and thinning northward. The Main Street Limestone formation is medium-grained, chalky, and - argillaceous. This formation is yellowish gray and weathers light gray to white. The Main Street Limestone formation is listed in the geologic literature as being 20 to 35 feet in thickness and thinning northward. The Grayson Marl and Main Street Limestone formation is at the boundary of the Upper and Lower Cretaceous Periods of the Mesozoic Era. The basal sedimentary rock units in the general site area are covered with a mantel of alluvial soil deposits of the Trinity River System, including the West Fork of the Trinity River and Village Creek. A sand stratum was encountered in Boring B-5 at a depth of 6 feet. This sand layer is considerably higher in elevation than in any of the other borings where sand was encountered. This upper sand layer extends to a depth of 30 feet (about elevation 444.8 ft) where the lower sand stratum was encountered at a similar elevation to the other borings. This sand layer occurs at a considerable distance from the river bank, since it is not present in Boring B-4. We believe this upper sand stratum in Boring B-5 is a terrace deposit laid down in a later geologic time frame than the lower sand stratum. A more detailed geological study would be required to more fully define the site geology.A detailed geological study is beyond the scope of this report, and is not necessary for the purposes of this geotechnical study. 4.2 Subsurface Stratigraphy Specific types and depths of subsurface strata encountered at the boring locations are shown on the boring logs in Appendix A. The generalized subsurface stratigraphy encountered in the borings is discussed below. GREGORY GEOTECHN/CAL 4-1 Report No. R02007 August 2003 SECTION 4 SUBSURFACE CONDITIONS Overburden soils encountered in the borings consist generally of Fat Clay, Lean Clay, Lean Clay with Sand, Sandy Lean Clay, and Sand with varying amounts of gravel. The thickness of the overburden soils at the boring locations ranges from approximately 42 to 52.5 feet in the four borings that penetrated into the shale. It should be noted that there is approximately 7.3 feet difference in the top elevation of the shale in Borings B.2 and B.S. Moreover, a much larger variation in elevation in a short horizontal distance is not unusual for the shale surface, which experienced mass erosion when exposed in the geologic past. The clayey soils are generally very soft to hard (soil basis) with pocket penetrometer readings of zero to over 4.5 tsf. Pocket Vane shear strength values ranged from 0.1 to 0.85 tsf. Undrained shear-strength values obtained from the unconfined compressive strength tests, UU triaxial tests, and quick direct shear tests performed on cohesive soils ranged from 0.979 to 17.74 ksf, for the specimens tested (refer to Section 3 for a discussion on validity of undrained shear-strength test results on specimens with moisture content below the plastic limit). Liquid limit and plasticity index values ranged from 25 to 54, and 13 to 37, respectively. Percent passing the number 200 mesh sieve ranged from 59 to 97. Unit dry weight values ranged from 98 to 124 pcf, and moisture contents ranged from 12 to 22. The sand and gravel layers overlying the shale are medium dense to very dense, with Standard Penetration Test N values ranging from 4 to 17 for the intervals tested. Percent passing the number 200 mesh sieve ranged from 7 to 48, and moisture contents ranged from 6 to 65 percent. The gray shale was generally moderately hard to very hard (sedimentary rock basis), with THD cone penetrometer values ranging from 0.25 inches to 3.5 inches per 100 blows. One THD cone penetrometer value in Boring B-3 at 55 feet was 9.5 inches per 100 blows. This specific location would be classified as soft (sedimentary rock basis). However, no other THD penetrometer test values were greater than 3.5 inches per 100 blows. Accordingly, the higher blow count at 55 feet in Boring B-3 is believed to be representative of the shale hardness over any significant area. Nonetheless, localized soft spots in the shale could occur at other locations and this should be anticipated. Undrained shear strength values (reported as 1/2 unconfined compressive strength) of the gray shale ranged from approximately 14 to 119 ksf (unconfined compressive strength of over 1,660 psi). Recovery in the core sample intervals ranged from 85 to 98 percent, GREGORY GEOTECHN/CAL 4-2 Report No. R02007 August 2003 SECTION 4 SUBSURFACE CONDITIONS and the RQD (rock-quality designation) values ranged from 69 to 97 percent. The RQD is an indication of the amount of fracturing or other secondary features present in the rock. RQD for a 2- inch diameter core run is determined by dividing the total length of pieces at least 4 inches in length by the total length in inches of the core run. Accordingly, an RQD of zero would mean that all pieces were shorter than 4 inches for that run, and an RQD of 100 would mean that all pieces were 4-inches or greater in length for that run. Dry unit weight and moisture content values of the gray shale ranged from 119 to 136 pcf and 8 to 24 percent, respectively. 4.3 Ground Water Observations Ground water was observed in borings B-2 through B-5 during and upon completion of drilling of each boring. The ground water surface was observed at depths ranging from about 23 feet to 35 feet below the ground surface at the time of drilling. The observed depths to ground water are shown on the logs of borings in Appendix A. Fluctuations of the ground-water level can occur due to seasonal variations in the amount of rainfall; site topography and runoff; hydraulic conductivity of soil strata; water levels in the adjacent river, water leaks from adjacent facilities; and other factors not evident at the time the borings were performed. The possibility of ground-water level fluctuations should be considered when developing the design and construction plans for the project. Based upon past experience in the project area and available data, we recommend that the seasonally high ground water level should be considered as the existing ground surface for design purposes. When considering buoyancy of structures, the water surface elevation of the project design flood (minimum of 100-year event) should be used. This elevation may be above the existing ground surface. Water traveling through the soil (subsurface water) is often unpredictable. This could be due to seasonal changes in ground water and due to the unpredictable nature of ground-water paths. Therefore, it is necessary during construction for the contractor to be observant for ground-water seepage in excavations in order to assess the situation and take appropriate action. Additional recommendations concerning ground water are covered other appropriate sections of the report. GREGORY GEOTECHN/CAL 4-3 Report No. R02007 August 2003 SECTION 5 SLOPE STABILITY ANALYSES 5.1 Conditions Analyzed Slope stability analyses were performed to evaluate the stability of the existing slopes of the river bank near the proposed siphon pipeline crossing and existing siphon pipelines. The existing slopes were analyzed for long term and rapid drawdown conditions.The existing slopes were analyzed for long-term conditions since the slopes have been in existence for an extended period of time. Under these circumstances, "end-of-construction" or short-tern conditions do not apply, since neither open cut nor tunnel construction of the proposed pipeline is expected to significantly change the overall pore pressure condition of the existing slopes. The various analyses were performed for slope sections on the eastern and western sides of the river near the proposed pipeline crossing, except that the sections were oriented essentially perpendicular to the slope contour lines rather than on an angle parallel to the proposed pipeline. The perpendicular sections result in steeper sections and are more critical than sections taken directly along the proposed pipeline alignment, which crosses the river at an angle. The minimum recommended factors of safety (FS) against sliding failures are presented in Table 5.1. The recommended minimum FS either meet or exceed the minimums recommended by the U.S. Army Corps of Engineers for levees (Reference 5.1). All of the various conditions are listed in the table, however as previously discussed; only the results from the long-term and rapid drawdown conditions are included. The FS represent the calculated resisting forces and moments divided by the calculated driving forces and moments of the various potential failure surfaces analyzed. These forces and moments are based on the estimated unit weights and shear strengths of the various soils in the slope profile. Accordingly, a FS of 1.0 indicates impending failure. The larger the FS above 1.0, the lower the risk that the slope will fail. As a practical matter, and in consideration of the variables and unknowns involved,the risk cannot be reduced to zero. The goal is to reduce the risk of slope failure to a reasonable and acceptable level, with due consideration of the consequences of failure. Earthquake (seismic) conditions were not analyzed as such, since the relatively low seismic coefficient of 0.05 applicable to the site area, when applied to the long-term condition, would result in a relatively small reduction in the long-term minimum recommended FS of 1.5, and would be considerably above the minimum recommended FS of 1.1 for the earthquake condition. GREGORY GEOTECHNICAL 5-1 Report No. R02007 August 2003 SECTION 5 SLOPE STABILITY ANALYSES TABLE 5.1 RECOMMENDED FACTORS OF SAFETY FOR EXPECTED CONDITIONS Recommended Minimum Loading Conditions of Slope Factor of Safety Long-Term Condition 1.5 End-of-Construction (Short-Term) Condition 1.3 Rapid Drawdown-Probable Worst Case 1.0 Rapid Drawdown-Anticipated Condition 1.2 Earthquake (seismic) 1.1 Based upon available information, we believe that the section analyzed generally represents the - tallest and steepest section of the slopes that would impact the proposed pipeline. Accordingly, slopes of less height with the same slope ratio and in the same soils should have higher factors of safety against sliding failures. 5.2 Slope Geometry and Stratigraphy The geometry of the slope sections for use in the slope stability analyses was developed from the survey contour plan provided to GREGEO by CDM. The surface profile was developed to extend from the riverbed to a distance extending far enough beyond the crest of the slope to cover the area of interest for slope stability considerations. The stratigraphy of the slope sections for use in the slope stability analyses was developed by dividing the subsurface profile into simplified soil and rock layers with the same general characteristics, based upon interpretive methods using the data from the field exploration and laboratory testing programs. On the western side of the river, in the zone of interest for slope stability analyses, the subsurface profile was represented by a surficial layer of lean clay extending to a depth of approximately 25 - GREGORY GEOTECHNICAL 5-2 Report No. R02007 August 2003 SECTION 5 SLOPE STABILITY ANALYSES feet, underlain by a sand layer extending to a depth of about 43 to 45 feet, underlain by the Grayson "shale" extending below the depth of interest for the analyses. These strata can be seen in borings B-3 and B-4. An upper sand stratum was encountered in Boring B-5 at a depth of only 6 feet. However, based upon data from borings B-3 and B-4, this upper sand layer is believed to be far enough from the slope face that it is not of concern for the slope stability analyses. Accordingly, this upper sand stratum was not incorporated into the subsurface profile for the slope stability analyses. The upper sand stratum is likely a terrace deposit laid down in a different geologic time frame than the lower sand stratum, as previously discussed in Section 4. On the eastern side (Plant side) of the river, in the zone of interest for slope stability analyses, the subsurface profile was represented by a surficial layer of fat clay extending to a depth of approximately 7 to 22 feet (bottom of the layer at approximate elevation 463 ft), underlain by a lean clay layer extending to an elevation of approximately 444 feet, underlain by a sand layer extending to an elevation of about 425 feet, underlain by the Grayson "shale" extending below the depth of interest for the analyses. The surficial layer of clay extending to about elevation 444 feet is actually composed of both fat clay and lean clay. However, some zones of the lean clay are close to the CH classification and we believe that the fat clay and lean clay layers in this zone of the slope will exhibit similar shear strength values. Consequently, the fat clay and lean clay layers were combined into the"CH Clay" layer on the analyses profile. Based upon drawings provided by CDM, the river banks at the existing siphon pipelines are covered with a layer of stone dprap. This dprap layer was not evident at the time of our field exploration. It is likely that the riprap has been covered over with sediment from the river flows.We did not include this riprap layer in our slope stability analyses. Including the riprap in the analyses would potentially increase the calculated FS by a small amount, but not by a significant amount. Since we do not know the actual extent or condition of the riprap, and it is slightly on the conservative side not to consider the dprap, it was not included in the analyses. 5.3 Description of Analyses 6.3.1 Computer Model The analyses were performed with the popular limit-equilibrium method computer program GSTABL7, developed by Gary H. Gregory, P. E. (Reference 5.2). Slopes can be analyzed with the GREGORY GEOTECHN/CAL 5-3 Report No. R02007 August 2003 SECTION 5 SLOPE STABILITY ANALYSES program using the Modified Bishop, Simplified Janbu, and General Limit Equilibrium (GLE) method, which includes options for both the Spencer and Morgenstern-Price analysis methods. The program can analyze a wide variety of slope stability conditions, including stabilizing inclusions such as piers/piles, soil nails, tiebacks, applied forces, planar reinforcement, and fiber-reinforced soil (FRS). The program also includes an option for a non-linear (curved) Mohr-Coulomb shear strength envelope. This option allows standard input of both shear strength parameters+and c, but then forces the strength envelope to curve downward to zero at the origin. This results in lower cohesion in the lower stress zones, but higher + values as the stress approaches zero. This soil model using the non-linear (curved) strength envelope is considered more accurate for most analyses with fine grained soils exhibiting both + and c in laboratory tests. This approach is more conservative and realistic than using the full + and c values throughout the soil zone, but is more accurate than the common practice of using the linear + value and considering c equal to zero throughout, which is often ultra conservative. The curved strength envelope option was used in the analyses for this study for all soils exhibiting both + and c in the laboratory tests. This option is referred to as the"Curved 4°option in the remainder of this report section. The slope stability analysis data are included in Appendix C. A summary of the analyses is presented on Plate C.1, and the graphical computer output plots are presented on Plates C.2 through C.7. The text output for each analysis is presented immediately following each analysis plot. The calculated FS values are presented to 3 decimal places only for the purpose of relative comparison among the various analyses. This does not imply that the FS calculations are accurate to 3 decimal places. On the contrary, with the many variables involved, accuracy to 2 decimal places is considered to be a high level of actual accuracy. FS values rounded to the nearest one decimal point are considered to be the reasonable level of accuracy to be expected. Circular surfaces were analyzed for this project using the Modified Bishop method. We believe that circular failure surfaces are most critical for the slope conditions analyzed. 5.3.2 Soil Parameters and Water Surface Levels The soil parameters used in the analyses were selected based upon a detailed review of the boring logs from this study and previous boring logs, upon the results of field and laboratory test results, upon observations at the site, and upon engineering judgment and experience with similar soils. T GREGORY GEOTECHN/CAL 5-4 - Report No. R02007 August 2003 SECTION 5 SLOPE STABILITY ANALYSES The results of the CD Direct Shear Tests were particularly useful for assigning shear strength parameters to the CH Clay, CL Clay, and Sand layers in the analysis profiles. The soil parameters selected for the slope stability analyses are included in the program output in Appendix C. A water surface (phreatic surface) level elevation of about 447 to 448 feet was used in all analyses for the long term condition. This is the approximate adjacent water elevation observed in the river at the time of our field exploration activities in November 2002. The phreatic surface assumed in the rapid drawdown analysis is discussed later along with other details of the rapid drawdown analyses. 5.3.3 West Side-South View—Long Term—Plate C.2 This section was analyzed for long term conditions using effective stress shear strength parameters and assumed normal water levels in the river and slope. The Curved � option was used for the cohesive soils in the analysis. The calculated FS for this condition is 1.434. This FS value is below the minimum recommended value of 1.5, but it is not drastically below the recommended value. This lower FS value is discussed further under subsection 5.5. 5.3.4 West Side-South View—Rapid Drawdown-1 —Plate C.3 This analysis includes the same geometry and shear strength values as used for the previous analysis, except the phreatic surface inside the slope was raised to the slope crest elevation, and was made to follow the surface of the slope down to the normal water elevation of 447 at the river. This model represents a very drastic and conservative assumption concerning rapid drawdown. The assumption is that during a major flood event on the river, the water surface is at or above the slope crest long enough to completely saturate the entire slope, then recedes rapidly enough that the normal river level is reached before any of the upper slope can drain. This can be considered a "lower bound" condition relative to slope stability FS values. The calculated FS value for this condition should be a minimum of 1.0. The actual calculated FS value for this condition is 0.993. This is below the minimum recommended value of 1.0, but is marginally close since it would round off to a value of 1.This lower FS value is discussed further in subsection 5.5. GREGORY GEOTECHN/CAL 5-5 Report No. R02007 August 2003 SECTION 5 SLOPE STABILITY ANALYSES 5.3.5 West Side-South View—Rapid Drawdown-2—Plate C.4 This analysis includes the same parameters as the Long-Term condition, except the highest phreatic surface level within the slope was assumed to be approximately half way up the slope face, with the remainder of the phreatic surface following the slope face down to the normal river level of approximately 447. The assumption is that during a major flood event on the river, the water surface is either not at or above the slope crest for long enough to saturate the entire slope, or recedes slowly enough to allow the upper portion of the slope to drain. We believe this condition to be more realistic and more likely to represent the phreatic surface in the slope at the time the flood water recedes to the normal river elevation. The minimum recommended calculated FS value for this condition is 1.2. The actual calculated FS value is 1.165, which is below the minimum recommended. However, the calculated FS value is marginal since it would round to 1.2. This lower FS value is discussed further in subsection 5.5. 5.3.6 East Side-North View—Long Term—Plate C.5 This section was analyzed for long term conditions using effective stress shear strength parameters and assumed normal water levels in the river and slope. The Curved � option was used for the cohesive soils in the analysis. The calculated FS for this condition is 1.581, which is above the minimum recommended value of 1.5. 5.3.7 East Side-North View—Rapid Drawdown-1 —Plate C.6 This analysis includes the same geometry and shear strength values as used for the previous analysis, except the phreatic surface inside the slope was raised to the upper slope crest elevation, and was made to follow the surface of the slope down to the normal water elevation at the river. This model represents a very drastic and conservative assumption concerning rapid drawdown. The assumption is that during a major flood event on the river, the water surface is at or above the slope crest long enough to completely saturate the entire slope, then recedes rapidly enough that the normal river level is reached before any of the upper slope can drain. This can be considered a "lower bound" condition relative to slope stability FS values. The calculated FS value for this condition should be a minimum of 1.0. The actual calculated FS value for this condition is 1.141, _ which is above the minimum recommended. .� GREGORY GEOTECHN/CAL 5-6 - Report No. R02007 August 2003 SECTION 5 SLOPE STABILITY ANALYSES 5.3.8 East Side-North View—Rapid Drawdown-2—Plate C.7 This analysis includes the same parameters as the Long-Term condition, except the highest phreatic surface level within the slope was assumed to be approximately half way up the slope face, with the remainder of the phreatic surface following the slope face down to the normal river level. The assumption is that during a major flood event on the river, the water surface is either not at or above the slope crest for long enough to saturate the entire slope, or recedes slowly enough to allow the upper portion of the slope to drain. We believe this condition to be more realistic and more likely to represent the phreatic surface in the slope at the time the flood water recedes to the normal river elevation. The minimum recommended calculated FS value for this condition is 1.2. The actual calculated FS value is 1.297, which is above the minimum recommended. 5.4 Presentation of Results The results of the slope stability analyses are included in Appendix C. Plate CA contains a summary of the analyses. Plates C.3 through C.7 contain the graphical computer output. The text output is presented on sequentially numbered pages immediately following the graphical output plates,for each analysis. The graphical output plates illustrate the 10 most critical failure surfaces of the total investigated for each multi-surface analysis. The most critical failure surface generated is shown by the heaviest line, and includes vertical arrows at each end of the failure surface. The calculated factors of safety are expressed to 3 decimal places only for relative comparison among the various analyses, as previously stated. This in no way implies that the calculated factors of safety are accurate to that level of precision. Indeed, precision to 2 decimal places would be highly accurate, and accuracy to 1 decimal place is more realistic. However, as previously stated, it is useful to express the calculated values to 3 decimal places for relative comparison. The slopes discussed in this report have been analyzed to determine a factor of safety with respect - to shear strength of the soils. The safety of the slope with respect to operation of equipment and safety of personnel working adjacent to or on the slopes is beyond the scope of this study and has not been addressed. The contractor must accept the responsibility of determining, implementing and maintaining the required safe operating practices and procedures for personnel, equipment, GREGORY GEOTECHN/CAL 5-7 Report No. R02007 August 2003 SECTION 5 SLOPE STABILITY ANALYSES and general traffic adjacent to or on the slopes during the construction phase. The Owner must accept the responsibility of determining, implementing and maintaining the required safe operating practices and procedures for personnel, equipment, and general traffic adjacent to or on the completed slopes prior to and following completion of construction. 5.5 Slope Stabilization Considerations This section includes considerations for the western slope where the calculated FS values are below minimum recommended values. We recommend stabilization measures for the existing western slope if the open cut method of construction is selected for the proposed siphon pipeline. If the tunnel method of construction is selected, the stability of the existing slope is not of particular concern relative to impact on the proposed pipeline. However, even if the tunnel method is selected, strong consideration should be given to stabilizing the existing slope in the vicinity of the existing siphon pipelines. As discussed previously,the stability of the existing slope is marginal based upon the results of this study. This is especially the case for the rapid drawdown condition, which can occur on a relatively frequent basis due to flood events on the river. Stabilization of the existing west slope could be accomplished by one or more of the following methods. • Flattening of the slope ratio to approximately 2.5 (2.5H:IV) by excavating the upper portion of the slope, if there is sufficient space to do so. • Stabilizing the slope with soil nails. This could be in conjunction with gabion mattress erosion protection. The gabion mattress would require internal waler beams to tie the heads of the soil nails, with the gabion mattress acting as a structural facing for the soil nails, as well as erosion protection for the slope. • Stabilization of the slope with reinforced concrete drilled shafts(piers). This would require at - least one row of vertical piers in the face of the slope on a relatively close spacing along the row; something on the order of 6 to 10 feet on center. _ GREGORY GEOTECHNICAL 5-8 Report No. R02007 August2003 SECTION 5 SLOPE STABILITY ANALYSES Specific recommendations and geotechnical design of the slope stabilization method are beyond the scope of this report. However, we can provide this information as Additional Services in an addendum to this report if the open cut method of construction is selected. 5.6 Erosion Control for Slopes We recommend that the slopes in the vicinity of the proposed siphon pipeline are protected from erosion with stone riprap. A minimum riprap thickness of 36 inches with a minimum of 9 inches of crushed stone bedding (total minimum thickness of 45 inches) should be used. The riprap should have a thickened section in the river bed at the toe of the slope with the thickness equal to a minimum of 1.5 times the thickness, with the top of the riprap 1 foot below the river bed. The riprap and bedding should conform to the gradations listed in Table 5.2. Table 5.2 Stone Riprap and Bedding Gradations - Gradations for 36-Inch Thickness of Riprap Sieve Size (inches)—Square Mesh Percent Passing 44 100 36 65— 100 30 50—80 18 25-45 12 10 -25 8 0 - 10 Gradations for 9-Inch Thickness of Bedding Sieve Size (inches)—Square Mesh Percent Passing 6 100 3 65 - 100 _ 1.5 40 -60 0.75 25 -40 No. 4 0 - 12 A geotextile should be used beneath the bedding material to separate the crushed stone bedding from the slope subgrade surface. The geotextile should conform to Guide Specification GSP012—GEOTEXTILE— EROSION CONTROL, in Appendix D. The limits of the riprap should be sufficient to thoroughly protect the proposed pipeline from surface runoff erosion and erosion from river action. The riprap should be tied into the existing GREGORY GEOTECHN/CAL 5-9 Report No. R02007 August 2003 SECTION 5 SLOPE STABILITY ANALYSES riprap over the existing siphon pipelines, if it is still present and in acceptable condition. Otherwise, the new riprap should be extended over the existing siphon pipelines. For any riprap requiring placement under more than 4 feet of water, we recommend certified - diver inspection, and also recommend that the construction documents require the contractor to have certified construction divers during preparation and placement of the underwater portions of the riprap. GREGORY GEOTECHNICAL 5-10 Report No. R02007 August 2003 SECTION 6 EARTHWORK 6.1 General The earthwork recommendations in this section are provided as general guidelines for excavation, non-expansive earth fill, structure backfill, general earth fill, and common earth fill, as may be required during development of the project. The term "embankment" as used in this section refers to any compacted earth fill required for structure pads, embankment fill, and general site grading fill required to properly construct the proposed facilities. 6:2 Clearing,Grubbing, and Stripping All areas to be excavated or to receive earth fill, structures, or other such facilities, should be cleared, grubbed, and stripped prior to excavation and subgrade preparation. Clearing and grubbing should consist of the removal of all trees, large vegetation, abandoned structures, and debris, including all roots 1 inch or larger in diameter, to a minimum depth of 18 inches below the proposed subgrade level. Stripping should consist of the removal of all topsoil, roots, vegetation and rubbish not removed by the clearing and grubbing operation. Additionally, any other unsatisfactory material should be removed from the subgrade area of future compacted fills or embankments, and from the surfaces underneath future roadways and structures. The stripped areas should be observed to determine ff additional excavation is required to remove weak or otherwise unsuitable materials that would adversely affect the fill placement. 6.3 Subgrade Preparation The subgrade should be firm and able to support the construction equipment without displacement. Soft or yielding subgrade should be corrected and made stable before construction proceeds. The subgrade should be proof rolled to detect soft spots, which if exist, should be reworked. Proof rolling should be performed using a heavy pneumatic tired roller, loaded dump truck, or similar equipment weighing approximately 25 tons. The equipment should be driven slowly over the subgrade with the tires staggered approximately 3 feet on each successive pass to allow detection of any soft or pumping subgrade areas. The proof rolling operations should be observed by the project geotechnical engineer. The sides of stump holes or other similar cavities or depressions should be broken down to flatten the slopes (no steeper than 5 horizontal to 1 vertical), with the + GREGORY GEOTECHNICAL 6-1 Report No. R02007 ' August 2003 SECTION 6 EARTHWORK sides of the cuts or holes being scarified to provide bond between the foundation soils and the embankment fill. Each depression or hole should be filled with the same type of material that is adjacent to the depression, unless such material is unsuitable for fill, in which case General Earth Fill should be used. Existing hillsides or slopes that will receive fill should be loosened by scarifying or plowing to a depth of not less than 8 inches. The fill material should be benched into the existing slope in such a manner as to provide adequate bonding between the fill and slope, as well as to allow the fill to be - placed in essentially horizontal lifts. Prior to placement of compacted fill in any section of the embankment, after depressions and holes have been filled, the foundation of such sections should be compacted to the same density and _ moisture requirement as the embankment. In areas of the subgrade that are too soft, wet or otherwise unstable to allow embankment construction to begin, the use of plating and/or plating in 'combination with a geogrid may be required. The traffic of heavy equipment, including heavy compaction equipment, may create pumping and general deterioration of the shallower clay soils. Therefore, it should be anticipated that some construction difficulties will be encountered during periods when these soils are saturated. Often the shallow sandy and silty soils also become wet and pump during rainy months, or due to ground-water conditions. Occasionally clayey, sandy, and silty soils have to be excavated, mixed and dried, and replaced. At times, excavating and replacing with selected soils, the use of lime or cement treatment, or the use of geosynthetics is required before an adequate subgrade can be achieved. 6.4 Placing of Material Embankment materials should be placed on a properly prepared subgrade as recommended above. The combined excavation, placing, and spreading operation should be done in such a manner to obtain blending of material, and to provide that the materials, when compacted in the embankment, will have the most practicable degree of compaction and stability. Materials GREGORY GEOTECHN/CAL 6-2 Report No. R02007 August 2003 SECTION 6 EARTHWORK excavated from cut sections or borrow areas and hauled to construct fills should be mixed and not segregated within any specific fill zone. However, selective excavation and segregation will be necessary to meet recommended specifications for the various fill zones. The intent is to produce the highest practicable degree of homogeneity within any specified earth-fill zone. If the surface of the embankment is too smooth and hard to bond properly with a succeeding layer, the surface should be roughened and loosened by disking before the succeeding layer is placed. Where fill is to be placed next to existing fill, that fill should be removed to unweathered, dense material. Each layer should be benched and disked as adjoining lifts are placed. Material hauling equipment should be so routed over the embankment surface to distribute the added compaction afforded by the rolling equipment, and to prevent the formation of ruts on the embankment surface. The surface of the fill should be graded to drain freely and maintained throughout construction. During the dumping and spreading process, all roots and debris and all rocks greater than 2 inches in maximum dimension should be removed from the embankment materials. No rocks should be allowed within the final 8 inches of subgrade. 6.5 Processing and Moisture-Density Control Following the spreading and mixing of the soil on the embankment, it should be processed by disking or pulverizing throughout its thickness to break up and reduce clod size, and provide additional blending of materials. Processing should consist of at least five passes of a fully penetrating disk plow or three passes of a fully penetrating roto till pulverizer mixer. Additional passes of the processing equipment should be performed as necessary to accomplish breaking up, reduction of clod size, moisture conditioning, and blending the fill. Each successive pass of the processing equipment should be in a direction perpendicular to the previous pass, where working space permits. The maximum recommended loose lift thickness prior to compaction is 8 inches. The moisture content of the soil should be adjusted, if necessary, by either aeration or the addition of water to bring the moisture content within the recommended range. Water required for sprinkling _ to bring the fill material to the proper moisture content should be applied evenly through each layer. GREGORY GEOTECHN/CAL 6-3 Report No. R02007 August2003 SECTION 6 EARTHWORK Any layers that become damaged by weather conditions should be reprocessed to meet recommended requirements. The compacted surface of a layer of fill should be lightly loosened by disking before the succeeding layer is placed. When the moisture content and the condition of the fill layer are satisfactory, compaction should be performed with a heavy tamping foot roller with fully penetrating feet(feet long enough to penetrate into the previous lift) either towed by a crawler-type tractor or the self-propelled type. The tamping foot roller should weigh no less than 2,000 pounds per linear foot of drum width. Vibratory tamping rollers are recommended for compacting sandier fill materials. The in-place density of the fill should be no less than 95 percent of the maximum dry density as determined by ASTM D 698, Standard Proctor, at a moisture content between optimum and 5 percentage points wet of optimum moisture content for all low-permeability earth fill zones (liners, cores, etc.) and between 2 percentage points below to 5 percentage points above optimum moisture content for non-expansive earth fill zones, general earth fill zones, and common earth fill zones. The moisture content and density of all fill material should be maintained at the specified range of moisture and density. These moisture ranges represent the maximum recommended limits. It is possible under some circumstances or with some soils, that a more narrow range, within the recommended limits, will be necessary for the contractor to consistently achieve the recommended density. In order to help provide a homogeneous earth fill mass, a minimum of eight passes of the tamping foot roller should be provided, even if the recommended density is achieved with fewer passes. Field density tests (including moisture content) should be taken as each lift of fill material is placed. A _minimum of one field density test per lift for each 2500 square feet of compacted area is recommended. For small or critical areas, the frequency of testing should be reduced to one test per 1000 square feet or less. A minimum of two density tests should be taken on each lift, regardless of size. The earthwork operations should be observed and tested on a continuing basis by an experienced soil technician working in conjunction with the project geotechnical engineer. Each lift should be compacted, tested, and approved before another lift is added. The purpose of the field density tests is to provide some indication that uniform and adequate compaction is being GREGORY GEOTECHNICAL 6-4 Report No. R02007 August 2003 SECTION 6 EARTHWORK obtained. The actual quality of the fill, as compacted, should be the responsibility of the contractor and satisfactory results from the tests should not be considered as a guarantee of the quality of the contractor's filling operations. 6.6 Structure Backfill Placement and Compaction 4 The backfill material should be placed in maximum 8-inch lifts and compacted to a density ranging between 95 and 100 percent of maximum Standard Proctor (ASTM D 698) dry density at a moisture content ranging from 2 percentage points below optimum to 5 percentage points above optimum for the backfill materials. Caution should be exercised not to over-compact the backfill. Over-compaction will result in excessive lateral earth pressures. Hand-operated tampers or other lightweight compactors are preferred in the 5-foot area adjacent to structures. Non-expansive earth fill should be used for structure backfill, unless specifically recommended otherwise elsewhere in this report. The lift thickness should be reduced to 4 inches for those areas where hand-operated compactors are required. The backfill surface should slope away from the structures on a gradient of 1.5 to 3 percent, such that surface water does not pond adjacent to the structure within the backfill zone. Topsoil and seeding should be accomplished to help prevent drying and cracking of the backfill surface. The slope should be maintained on a 1.5 to 3 percent gradient after topsoil is placed. 6.7 Trench Backfill Trench backfill for pipelines or other utilities should be properly placed and compacted. Overly dense or dry backfill can swell and create a mound along the completed trench line. Loose or wet backfill can settle and form a depression along the completed trench line. Distress to overlying structures, pavements, etc. is likely if heaving or settlement occurs. Non-expansive earth fill or flowable fill is recommended for trench backfill in all areas adjacent to structures. Care should be taken not to use free draining granular material, to prevent the backfilled trench from becoming a French drain, which might allow intrusion of surface or subsurface water beneath structures, pipelines, or pavements. If a higher class of bedding material is required for the pipelines near or beneath structures or pavements, flowable fill will limit water intrusion into the trench and will not require compaction after placement. The non-expansive earth fill should be placed in approximate 4- to 6-inch loose lifts. The density and moisture content should be as recommended for non- expansive fill in subsection 6.5 Processing and Moisture- Density Control, of this report, except all GREGORY GEOTECHN/CAL 6-5 Report No. R02007 August 2003 SECTION 6 EARTHWORK non-expansive backfill above the spring line of the pipes, in sections of the trench underneath pavements, should be compacted to a minimum of 100 percent of maximum dry density (ASTM D 698). Class 2 Aggregate fill, as described in Appendix C, may be used for pipelines completely outside the area of structures and pavements. Class 2 Aggregate Fill should be compacted with a vibratory compactor, to a minimum of 95 percent of Maximum Index Density as determined by ASTM D4253, at a moisture content that will facilitate compaction. A minimum of one field density test should be taken per lift for each 150 linear feet of trench, with a minimum of two tests per lift. In restricted areas where compaction of non-expansive earth fill is not practical,flowable fill should be used. Where lean concrete fill or flowable fill is used, each lift or section should be allowed to reach initial set as required to provide the intended support, prior to the next lift or section being placed. This subsection does not address trenching, embedment, and backfill for the main siphon pipeline. Trenching, embedment, and backfill for the main siphon pipeline are addressed in Sections 9 and 10 of this report. 6.8 Aggregate Fill Placement for Structure Backfill Aggregate Fill, if recommended for any zones of structure backfill, should be compacted in maximum 6=inch lifts with a steel-wheeled vibratory compactor of sufficient weight to achieve full consolidation of the aggregate fill. Aggregate fill should be compacted to a minimum of 95 percent of Maximum Index Density as determined by ASTM D 4253 (or a manual procedure approved by the geotechnical engineer which produces similar results to the ASTM D 4253 procedure), at a moisture content that will facilitate consistent compaction.A minimum of 4 passes of the compactor should be provided, even if the recommended density is achieved with fewer passes. A hand- operated vibratory plate compactor of the "walk behind" type should be used in the 5-foot areas adjacent to foundation walls to reduce potential for damage or excessive pressure on the walls. In areas where the hand-operated vibratory plate compactor is used, the lift thickness should be reduced to 4-inches. Care should be taken during compaction of aggregate fill to prevent damage to any geosynthetics used in conjunction with the fill. Refer to the guide specifications on geosynthetics in Appendix D of this report for specific recommendations, if applicable. GREGORY GEOTECHN/CAL 6- Report No. R02007 August 2003 SECTION 6 EARTHWORK 6.9 Earth Fill and Flowable Fill Materials The following information is provided to define the requirements for the various earth fill and flowable fill materials for construction of the project. Aggregate fill materials are described in the guide specifications in Appendix D. It should be noted that not necessarily all earth fill materials listed below may be required for the project. Refer to the specific recommendations for the various fill zones. 6.9.1 Non-Expansive Earth Fill Non-expansive earth fill should consist of soil materials with a liquid limit of 35 or less, a plasticity index between 8 and 20, a minimum of 35 percent passing the No. 200 sieve, a minimum of 85 percent passing the No. 4 sieve, and which are free of organics or other deleterious materials. When compacted to the recommended moisture and density, the material should have a maximum free swell value of 0.5 percent under a maximum seating pressure of 2 psi, and a maximum hydraulic conductivity (permeability) of 1 E-05 cm/sec, as determined by laboratory testing of remolded specimens of the actual materials proposed for the non-expansive earth fill. The project geotechnical engineer should approve the testing parameters. 6.9.2 Low-Permeability Earth Fill Low-permeability earth fill should consist of soil materials classed as CH or CL in accordance with ASTM D 2487, CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES. The materials also should have a minimum liquid limit of 35, a minimum plasticity index of 18, a minimum of 85 percent passing the No. 4 sieve, and should be free of organics or other deleterious materials. The material should have a Percent Dispersion of less than 20 when tested in accordance with ASTM D 4221, STANDARD TEST METHOD FOR DISPERSIVE CHARACTERISTICS OF CLAY SOIL BY DOUBLE HYDROMETER. When compacted to the recommend moisture and density, the material should have a maximum hydraulic conductivity of 1 E-07 cm/sec, as determined by laboratory testing of remolded specimens of the actual materials proposed for the low-permeability fill. 6.9.3 General Earth Fill General earth fill may consist of any soil materials which have a minimum plasticity index of 8, a minimum of 20 percent passing the No. 200 sieve, a minimum of 85 percent passing the No. 4 GREGORY GEOTECHN/CAL 6-7 Report No. R02007 August 2003 SECTION 6 EARTHWORK sieve, and which are free of organics or other deleterious material. 6.9.4 Common Earth Fill Common earth fill may consist of any soil materials which have a minimum of 85 percent passing the No.4 sieve and which are free of organics or other deleterious materials. 6.9.5 Flowable Fill Flowable fill should consist of a low-cement content ready-mix material with high flow properties. The mix should consist of approximately one part Portland cement to three parts flyash, by weight with sufficient amounts of aggregate, high air generator or foaming agent, and water to produce a 28-day compressive strength in the range of 25 to 200 psi. The flowable should have a maximum hydraulic conductivity of 1 E-05 cm/sec after curing for 7 days. The material should have an initial set time (walkable-surface) of 24 hours or less. The flowable fill should provide full support to pipelines, adjacent earth walls, structures, or other such facilities, after initial set, but should be of a low enough compressive strength after reaching final strength to allow future excavation with ordinary small power excavation equipment. The contractor should be required to submit an appropriate mix design along with laboratory test results on the flowable fill prior to beginning work on this item. 6.9.6 Compliance Testing Representative samples of the actual fill materials proposed for use in the various fill zones should be initially tested for compliance with the recommendations by the project geotechnical engineer, prior to use of the materials as fill. The testing program should continue through construction as a means to verify that the fill materials being placed continue to meet the recommended requirements. 6.10 Earth Fill Zones Table 6.1 at the end of this report section contains recommendations for the various earth fill zones. GREGORY GEOTECHN/CAL 6-8 - Report No. R02007 August 2003 SECTION 6 EARTHWORK Other specific recommendations for earth fill materials, and for aggregate fill materials are also presented in other sections of this report. Based upon laboratory, testing performed for this study, it appears that some on-site soils may meet classification recommendations for some of the earth fill materials, although blending and selective excavation/segregation will be required. A quantitative soil analysis is beyond the scope of this report, and an estimate has not been made of the volume of various soil materials available on site. 6.11 Acceptance of Imported Fill Any soil imported from off-site sources should be tested for compliance with the recommendations for the particular application and approved by the project geotechnical engineer prior to the materials being used. The owner should also require the contractor to obtain a written, notarized certification from the landowner of each proposed off-site soil borrow source stating that to the best of the landowners knowledge and belief there has never been contamination of the borrow source site with hazardous or toxic materials. The certification should be furnished to the owner prior to proceeding to fumish soils to the site. We also recommended that the contractor be required to provide the services of an EPA approved laboratory to perform, as a minimum, a toxic contaminant scan of composite soil samples representative of each separate proposed borrow source, in accordance with EPA protocol for the list of contaminants contained in 40 CFR, Part 261, Appendix VIII, by EPA methods SW-846, prior to importing the soil borrow. Any potential off- site soil borrow on which the test results indicate the presence of contaminants above background levels should be rejected. Soil materials derived from the excavation of underground petroleum storage tanks should not be used as fill on this project. 6.12 Excavation Excavations should be made to the true lines and grades necessary for construction of the proposed facilities. If solid rock excavation in open cut areas or trenches is to be considered as an additional pay item in the construction documents, we recommend that the following definition of "solid rock"be included in the construction documents: In order for any rock material to be considered as solid rock, it must meet all of the following criteria: • The rock must be massive and in a continuous layer at least 2 feet thick. • The rock must have an unconfined compressive strength greater than 80 ksf. GREGORY GEOTECHN/CAL 6-9 Report No. R02007 August2003 SECTION 6 EARTHWORK • The rock cannot be ripped from a starter trench in an open cut excavation with a D-9 Caterpillar(or equivalent) bull dozer with a single tooth ripper, or in a trench excavation with a 235C Caterpillar (or equivalent) track hoe excavator equipped with a nominal 30-inch wide extreme-service trenching bucket with front and rear mounted rock ripper teeth. Boulders and cobbles, whether in densely spaced layers or occasional occurrence, should not be classed as solid rock, regardless of the hardness of the individual boulders or cobbles. In general, excavation slopes of 1-horizontal to 1-vertical are adequate for temporary slopes during construction. However, some soil conditions at the site will become unstable where a 1-horizontal to 1-vertical slope is used. These unstable soils include, but are not necessarily limited to (1)jointed, fissured, soft, and slickensided clays, (2) soils with pockets or layers of sand or gravel, and (3) soils with ground-water seepage occurring. Slopes in these types of soils may become unstable during periods of wet weather or as loads are applied to the top and/or along the slope. Weather conditions, the excavation depth, adjacent structures, construction equipment, and the length of time the excavation will remain open also affect the stability of slopes. Temporary slopes of 2-horizontal to 1-vertical and flatter would be more appropriate for this site, for slopes above the ground-water table. Soils below the ground-water table and saturated soils, including but not necessarily limited to saturated sands, will require very flat slopes or shoring to remain stable during construction. In all cases, the contractor must follow the requirements of the Occupational Safety and Health Administration (OSHA). It is important for the contractor to monitor the slope stability by observation and measurement, and to prevent excessive loads (especially heavy vibratory loads) from being applied to the slope. The'contractor should be responsible for maintaining the slopes in a safe condition during construction and the use of slope stability monitoring equipment is recommended. This report has not been prepared for trench safety and/or excavation slope design. The side slopes of excavations through the overburden soils should be made in such a manner to provide for their stability during construction. Structures, pipelines or other facilities which are GREGORY GEOTECHNICAL 6-10 Report No. R02007 August 2003 SECTION 6 EARTHWORK constructed prior to or during the currently proposed construction and which require excavation, should be protected from loss of end bearing or lateral support. Temporary construction slopes and/or permanent embankment slopes should be protected from surface runoff water. Site grading should be designed to allow drainage at planned areas where erosion protection is provided, instead of allowing surface water to flow down unprotected slopes. Trench safety recommendations are beyond the scope of this study. The contractor must comply with all applicable safety regulations concerning trench safety and excavations, including, but not limited to OSHA regulations. The construction documents should include a specific bid item for trench safety systems. 6.13 Dewatering of Excavations The design or quantitative analyses of ground-water dewatering systems is beyond the scope of this study. The following information is provided as a guideline only. The contractor should be responsible for selecting and providing appropriate excavation dewatering systems for use during construction. Ground water will be encountered within excavations at the site, with the amount depending on the depth of the excavations, the time left open, weather conditions, water levels in the adjacent river, and adjacent activities. The decision as to the method for handling ground water depends upon such factors as the soil characteristics within the excavation depth, site hydrogeology, the size and depth of the excavation, method of excavation and side slopes, the proximity of existing structures,their depth and foundation type, and the design and function of the proposed facilities. Choice of a particular method or a combination of methods for dewatering any given excavation will require an analysis by the contractor of the subsurface soil and ground-water conditions, the requirements of the work, and the contractor's experience with dewatering excavations. Although _ a geotechnical study has been made, the scope of the study did not include an evaluation of construction dewatering requirements, therefore some unanticipated subsurface conditions could exist related to construction dewatering. GREGORY GEOTECHNICAL 6-11 Report No. R02007 August 2003 SECTION 6 EARTHWORK Regardless of the dewatering method selected, it should be capable of lowering and continuously maintaining the ground-water surface a minimum of 3 feet below the base of all excavations throughout the construction period. The contractor should be required to provide adequate personnel and equipment to operate and maintain the dewatering system on a 24-hour basis, as required. The dewatering method selected by the contractor must be designed to prevent settlement or other adverse affects to adjacent structures due to drawdown of ground water, or otherwise. This may require isolation of the dewatering areas with sheet pile cutoffs or similar facilities. The contractor should be required to demonstrate in appropriate submittals that the proposed method of dewatering will not adversely affect adjacent structures, prior to beginning dewatering operations. 6.14 Soil Corrosion Potential Corrosion risk to buried metal facilities can be estimated by the electrical resistivity of the host soils. Table 6.1 indicates the corrosion potential of soils based upon resistivity values. The Soil Box Resistivity test results of the site soils tested range from 814 to 1354 ohm-centimeters. These soils should be considered very corrosive. Accordingly, all buried metallic structures, including pipelines, should be appropriately protected from corrosion. Soluble Sulfate testing or other chemical testing of site soils were not included in the scope of services for this geotechnical study. Sulfate contents greater than about 2,000 mg/Kg are likely to cause adverse reaction with lime or cement and may result in "sulfate-induced heave."Accordingly, lime or cement treatment is not recommended for these soils, unless speck sulfate testing is performed. The American Concrete Institute (ACI) lists requirements for concrete exposed to sulfate-containing solutions. Appropriate precautions should be taken to comply with ACI recommendations concerning concrete exposure to sulfates in soil, if sulfates are found or believed to exist in the site soils. GREGORY GEOTECHN/CAL 6-12 Report No. R02007 August 2003 SECTION 6 EARTHWORK TABLE 6.1 SOIL CORROSION POTENTIAL Electrical Resistance Soil Corrosivity ohm-centimeters 0-2,000 very corrosive 2,000-5,000 corrosive 5,000-10,000 moderately corrosive 10,000-25,000 mildly corrosive 25,000-50,000 relatively less corrosive 50,000-100,000 progressively non-corrosive 6.15 Erosion and Sediment Control All disturbed areas should be protected from erosion and sedimentation during construction, and all permanent slopes and other areas subject to erosion or sedimentation should be provided with permanent erosion and sediment control facilities. All applicable ordinances and codes regarding erosion and sediment control should be followed. GREGORY GEOTECHN/CAL 6-13 Report No. R02007 August 2003 SECTION 6 EARTHWORK TABLE 6.1 EARTH FILL ZONES Item Zone Earth Fill Material Embankment Fill for strictures, pavements and flatwork Top 10 feet Non-Expansive Embankment Fill for structures, pavements and flatwork Below 10 feet General Structure Backfill All Non-Expansive Trench Backfill beneath present or All(exclusive of lean concrete or Non-Expansive future strictures,pavements and flowable fill zones) flatwork -` Trench Ball more than 5 feet To 1 foot above top of pipe Non-Expansive outside the limits of present or future (exclusive of lean concrete or structures,pavements and flatwork flowable fill zones) Trench Backfill more than 5 feet From 1 foot above top of pipe and General -- outside the limits of present or future upward structures,pavements,and flatwork General Embankments more than 5 feet outside the limits of present and All General future structures,pavements and flatwork General Site Grading where no Top 1 Foot General slopes or deep fills are involved. General Site Grading where no — Below 1 Foot Common slopes or deep fills are involved. Seepage plugs around pipes,and All Low-Permeabiio liners/barriers NOTE: Table 6.1 does not include Aggregate Fill Zones and Materials, which are recommended elsewhere in this report, if applicable. _ GREGORY GEOTECHN/CAL 6-14 Report No. R02007 August 2003 SECTION 7 FOUNDATION RECOMMENDATIONS 7.1 General Foundation Considerations Two independent design criteria must be satisfied in the selection of the type of foundation to support the proposed structures. First,the bearing pressure transferred to the foundation soils must not exceed the ultimate bearing capacity, reduced by a sufficient factor of safety. Second, due to consolidation or expansion of the underlying soils during the operating life of the structures, total and differential vertical movements must be within tolerable limits. The foundations for the various structures are discussed below. Foundation Construction Considerations are presented in subsection 7.6. Information on the structures was provided by CDM during the preliminary design phase. 7.2 Junction Box for Siphon Pipeline 7.2.1 General A reinforced concrete junction box will be required at the western end of the proposed siphon pipeline. The junction box will be located in the vicinity of existing junction boxes D and DID, and approximately at the location of Boring B-5. If the open cut method of construction is selected for the pipeline, the proposed junction box is assumed to have an overall footprint of approximately 30 feet by 50 feet and to be founded at about elevation 455 feet, which is about 20 feet below existing grade at Boring B-5. If the tunnel method of construction is selected for the pipeline, the junction box is assumed to be somewhat larger and to be founded within the "shale" of the Grayson formation. The junction box will be reinforced concrete construction and will be ground supported below grade on a mat(base slab)foundation. 7.2.2 Foundation Bearing Capacity and Settlement If the open'cut option is selected, the mat foundation for the junction box will be founded in the loose sand as shown on the log of boring for B-5 on Plate A.8a. Although the loose sand would support the junction box from a bearing capacity standpoint, excessive settlement could occur in the loose sand over the long term due to vibration caused by surging of the influent in the pipelines or other similar vibratory impacts. Consequently, we recommend compaction grouting of the area beneath the proposed junction box and to a minimum of 10 feet outside the footprint on all sides. The compaction grouting should extend to the top of shale, and the grout holes should have a nominal spacing of 5 feet on centers. The compaction grouting should be installed from ground level prior to excavation, and should be performed in accordance with Guide Specification GSP082 GREGORY GEOTECHN/CAL 7-1 Report No. R02007 August2003 SECTION 7 FOUNDATION RECOMMENDATIONS — COMPACTION GROUTING FOR SOFT OR LOOSE SUBGRADES, in Appendix D. In consideration of the compaction grouting, the mat slab foundation may be designed for a gross allowable bearing capacity of 5 ksf. The mat foundation proportioned for these values should experience a total settlement of 1 inch or less and a differential settlement of 0.75 inches.or less, after construction. Since the mat foundation will be about 20 feet below grade in the compaction- grouted sand layer, expansive soil movements will not be a problem for this foundation. In the event that the tunnel option is selected, the junction box will be founded in the gray shale of the Grayson formation. In this case the compaction grouting will not be required. The mat slab foundation founded in the hard to very hard gray shale may be designed for a gross allowable bearing capacity of 10 ksf. The mat foundation proportioned for these values should experience a total settlement of 0.75 inches or less and a differential settlement of 0.5 inches or less, after construction. Expansive soil movements will not be a problem for the mat foundation founded in the shale. 7.2.3 Buoyancy Considerations The junction box will be founded below the anticipated seasonally high ground-water table by as much as 20 to 50 feet or more, depending on whether it is founded in the sand layer for open cut construction or in the shale for tunnel construction. Moreover, the actual water surface may extend above the ground surface during major flood events and produce a higher hydrostatic head for buoyancy considerations. Consequently, the structure will be subjected to buoyancy and calculations should be performed to determine if the buoyancy is a problem to stability of the structure. The calculations should be based upon a seasonally high ground water table at the ground surface plus any water depth above the ground surface during the project design flood. Resistance to buoyancy may be increased by extending the mat foundation slab beyond the walls of the junction box to form a toe to engage the surrounding soil. The dead weight of the structure and the soil immediately above the projected toe of the mat foundation may be considered to help in resistance to buoyancy. Buoyant unit weights must be used below the anticipated highest water surface elevation. Buoyant unit weights of 87 pcf and 60 pcf may be used for reinforced concrete and soil, respectively. Unit weights above the water table of 150 pcf for concrete and 120 pcf for soil may be used. In addition, the undrained shear strength of the soil may be considered to resist buoyancy. An allowable shear strength of 500 psf over an area equal to the perimeter of the mat GREGORY GEOTECHNICAL 7-2 Report No. R02007 August 2003 SECTION 7 FOUNDATION RECOMMENDATIONS foundation toe times the effective depth below permanent grade to the top of the mat foundation toe. The effective depth may be considered as the actual depth less 5 feet to allow for desiccation cracks near the surface. The buoyancy calculations should be performed-under the assumption that the structure is empty of water at the time the maximum water surface elevation is present. The resistance to buoyancy should have a minimum factor of safety of 1.5 under the recommended conditions. 7.2.4 Mat Foundation Construction Considerations Mat foundation construction for the junction box should be observed by a representative of the geotechnical engineer to observe, among other things,the following items: • Identification of bearing material • Adequate penetration of the foundation excavation into the bearing layer • The base and sides of the excavation are clean of loose cuttings • If seepage is encountered, whether it is of sufficient amount to require the use of excavation dewatering methods (will definitely be required if founded in shale) Precautions should be taken during the placement of reinforcing steel and concrete to prevent loose, excavated soil from falling into the excavation. Concrete should be placed as soon as practical after completion of the excavating, cleaning, reinforcing steel placement and observation. Excavation for each portion of the mat foundation should be filled with concrete before the end of the workday, or sooner if required, to prevent deterioration of the bearing material. Prolonged exposure or inundation of the bearing surface with water will result in changes in strength and compressibility characteristics. If delays occur, the excavation should be deepened as necessary and cleaned, in order to provide a fresh bearing surface. If more than 24 hours of exposure of the bearing surface is anticipated in the excavations, a "seal slab" should be used to protect the bearing surfaces. If a seal slab is used, the foundation excavation should initially be over- excavated by approximately 4 inches and a lean concrete seal slab of approximately 4 inches in thickness should be placed in the bottom of the excavation immediately following exposure of the bearing surface by excavation. The seal slab will protect the bearing surface, maintain more uniform moisture in the subgrade, facilitate dewatering of excavations if required, and provide a working surface for the placement of formwork and reinforcing steel. GREGORY GEOTECHN/CAL 7-3 Report No. R02007 August 2003 SECTION 7 FOUNDATION RECOMMENDATIONS The concrete should be placed in a manner that will prevent the concrete from striking the reinforcing steel or the sides of the excavation in a manner that would cause segregation of the concrete. 7.3 Below Grade Walls and Lateral Earth Pressures 7.3.1 General The exterior walls of below grade structures will serve as earth retaining walls, as backfill is placed. Therefore, the walls must be designed for lateral pressures including, but not necessarily limited to, earth, water, surcharge, swelling, and vibration. In addition, the lateral pressures will be influenced by whether the backfill is drained or undrained, and above or below the ground-water table. 7.3.2 Equivalent Fluid Pressures The following equivalent fluid pressures (triangular distribution) may be used for the horizontal backfill, non-surcharged condition. Non-expansive earth fill is recommended for structure back fill. The geotechnical design parameters for non-expansive earth fill are provided in Table 7.1. The active condition occurs when the structure moves away from the soil by tilting or translation. A lateral movement of approximately 0.008 times the height of the structural member (e.g. wall, foundation, etc.) in direct contact with the earth fill may be required to achieve active pressure. The at-rest condition occurs for a rigid structure where essentially no relative movement occurs between the structure and the soil. The passive condition occurs when the structure moves toward the soil by tilting or translation. A lateral movement of approximately 0.05 times the height of the structural member in direct contact with the earth fill may be required to develop full passive pressure. The material descriptions for non-expansive earth fill are provided in Section 6.0 EARTHWORK. An angle of internal friction of 26 degrees, a cohesion value of zero, a wet unit weight of 125 pcf, and a saturated unit weight of 130 pcf have been assumed for the non- expansive earth fill, compacted as recommended in Section 6.0 EARTHWORK. The use of clay backfill, not meeting the requirements for non-expansive fill, can cause excessive swell pressures against below-grade walls, and should therefore be avoided. The junction box walls should be designed for at-rest earth pressure conditions. GREGORY GEOTECHN/CAL 7-4 Report No. R02007 August 2003 SECTION 7 FOUNDATION RECOMMENDATIONS TABLE 7.1 Non-Expansive Earth Fill -Lateral Earth Pressure Coefficients Equivalent Fluid Pressure/psf/ft of Backfill Depth Above Water Table* Condition Coefficient Drained Saturated Below Water Table Active KA=0.39 49 51 89 At Rest Ko =0.56 70 73 100 Passive Kp=2.56 320 333 236 Refer to subsection 7.3.5 for drainage requirements The non-expansive earth fill should be placed against all below grade walls in a minimum zone beginning a minimum of 2 feet out from the wall at the bottom and sloping at a ratio of 1.6 vertical to 1.0 horizontal, to the ground surface (see Plate C.8). This represents a minimum zone for earth pressure influence and is not meant to indicate a safe slope ratio for excavation purposes. The contractor must provide a slope ratio that will be safe and stable during construction. Any required excavation or sloping outside the minimum limits of the influence zone may be filled with non- expansive earth fill or general earth fill, as defined in Section 6.0 EARTHWORK. 7.3.3 Additional Lateral Pressures The location and magnitude of permanent surcharge loads (if present) should be determined, and the additional pressure generated by these loads and temporary loads, such as the weight of construction equipment and vehicular loads, that are used at the time the structures are being built must also be considered in the design. The equivalent fluid pressures, given here, do not include a safety factor. Analysis of surcharge loads (if any) should be performed on a case-by-case basis. This is not included in the scope of this study. These services can be provided as Additional Services upon request. GREGORY GEOTECHN/CAL 7-5 Report No. R02007 August 2003 SECTION 7 FOUNDATION RECOMMENDATIONS 7.3.4 Passive Earth Pressure and Friction Factor for Wall Foundations Passive earth pressures acting against the toe of wall foundations, keys or similar structural members, and friction on the base of the wall foundations may be considered to provide resistance to lateral forces tending to cause translational sliding. Passive earth pressures on the toe of wall foundations, keys or similar structural members should be considered for counteracting lateral forces only if the member is placed in direct contact with undisturbed stiff to hard cohesive soil in a "neat cut"excavation. If the foundation is constructed by using forms, lean concrete may be placed between the footing and the undisturbed wall of the adjacent excavation (after removal of the forms) in order to provide the direct contact required to consider passive pressure for counteracting lateral movement. The lean concrete should have a minimum 28-day compressive strength of 1,500 psi. Additionally, the foundation should be a minimum depth of 3 feet below the lowest adjacent grade. An allowable passive pressure of 450 pounds per square foot (psf) per foot of depth can be used in design calculations for undisturbed stiff to hard cohesive soil. A safety factor has been applied to the full passive pressure such that the lateral movement required to mobilize the allowable passive pressure of 450 psf per foot of depth is reduced to approximately 0.02 times the height of the structural member in full contact with the undisturbed stiff to hard cohesive soil. A friction factor of 0.35 for mass concrete on undisturbed stiff to hard cohesive soil or compaction-grouted sand can be used in design for those portions of foundations with full positive pressure on the base of the foundation. Friction between the base of the foundation and the cohesive soil or compaction-grouted sand, calculated on the basis of the friction factor given above, should not exceed an.upper limiting value of 750 psf. Only long-term dead loads should be considered in calculating the available friction on the foundation base. 7.3.5 Below-Grade Drainage Requirements In order to achieve the "above water table"condition for lateral earth pressures for low-permeability walls (concrete, masonry, etc.), a vertical drainage blanket or geocomposite drainage member must be installed adjacent to the wall on the backfill side. The drainage blanket or member must be connected to an outlet drain at the base of the wall. If the outlet drain cannot discharge by gravity to a free outlet, a sump and pump system will be required. Design or specific recommendations for the drainage member is beyond the scope of this study. These services can be provided as Additional Services upon request. In order to achieve the "drained" condition, the entire backfill material must be free draining, or the backfill-wall geometry must be such that the backfill will not GREGORY GEOTECHN/CAL 7-6 Report No. R02007 August2003 SECTION 7 FOUNDATION RECOMMENDATIONS become saturated from rainfall, ground water, adjacent watercourses, or other sources. it should be noted that non-expansive earth fill is not free draining. GREGORY GEOTECHN/CAL 7-7 Report No. R02007 August 2003 SECTION 8 EXPANSIVE SOIL CONSIDERATIONS 8.1 General Expansive Soil Considerations The expansive soils encountered at this site may shrink and swell considerably as the soil moisture content fluctuates during seasonal wet and dry cycles. Additionally, the site environment is impacted by grading and drainage, vegetation, ground-water conditions, and many other factors which affect the structures during and after construction.Therefore,the amount of soil movement is difficult to determine due to the many unpredictable variables involved. Estimates of soil movements for this site have been performed using data from the free swell tests, and using methods reported by Johnson and Snethen, 1979 (Reference 8.1), and O'Neill and Ghazzaly, 1977 (Reference 8.2); and engineering judgment and experience. Vertical soil movements ranging from approximately 3 to 5 inches have been estimated for the fat clay soils at the site for an estimated active depth of 12 feet, as the soils undergo moisture changes from extremely dry to extremely wet conditions. The estimated soil movements are based on the subsurface conditions revealed by the borings and for seasonal moisture fluctuations. The sandy lean clay soils at the site, with Liquid Limit values not greater than 40 and plasticity index values not greater than 25 are not anticipated to cause significant expansive soil problems for the proposed facilities. 8.2 Expansive Soil Considerations for Equipment Slabs and Pads Surface slabs and pads for pumps, piping, or other such facilities are generally lightly loaded and are not capable of resisting the heaving forces of expansive clay soils. The estimated soil movements should be considered detrimental to such slabs placed on grade. In areas sensitive to slab movement, the potentially expansive soil should be removed the full depth and to a minimum of 5 feet outside the limits of the slab, and replaced with non-expansive earth fill. 8.3 Site Drainage An important feature of the project is to provide positive drainage away from the structures.A slope of 1.5 to 3 percent should be provided, such that the soil slopes away from the structures. The overall site should be graded in a manner to prevent ponding of water near structures or pipelines. GREGORY GEOTECHN/CAL 8-1 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS 9.1 General This section addresses general geotechnical considerations for the pipelines. Trenching and backfill recommendations and dewatering considerations for the pipelines are presented in Section 6 TRENCHING, EMBEDMENT AND BACKFILL. 9.2 Stability of Adjacent Facilities Along numerous lengths of the proposed pipeline there are existing embankments, utilities, structures, and similar facilities (adjacent facilities), which potentially could be impacted by the pipeline excavations. These facilities may consist of, but are not limited to structures, river banks, natural or fill embankments, utility poles or towers, and underground utilities. Stability analyses of these facilities are beyond the scope of this study. However, the following recommendations should be provided to and required of the contractor, to limit potential damage to adjacent facilities from the pipe trenching operation. The areas most likely to be affected are those which are within a distance from the pipe trench such that a 4-horizontal to 1-vertical (41-1:1V) line projected downward from the toe of the embankment or from the utility location would intercept the pipe trench or within 3 feet below the pipe trench at the closest point. Areas of very weak, very wet, flowing, or otherwise unstable soils may be affected even if outside the limits given above. These unstable soils occur in some boring locations performed for this study, and could occur between boring locations where these conditions were not observed, or stable areas could later become unstable due to changes in ground-water levels or other causes. Accordingly, if adjacent facilities are located within the limits described above, or if unstable conditions are observed or suspected during excavation of trenches in the vicinity of adjacent facilities, the rigid shoring method (as opposed to trench boxes, etc.) should immediately be utilized for any such areas. A provision for this situation should be included in the construction documents. These critical areas should be specifically pointed out to the contractor in the project documents and special shoring should be required in these areas. The shoring should be in intimate contact With the trench walls and be capable of fully supporting the trench walls against movement. The rigid shoring should be installed from the top down as excavation progresses. This "rigid" shoring is required to protect the trench walls as well as workers in the trench, whereas a GREGORY GEOTECHN/CAL 9-1 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS "trench box" is designed to protect workers, but may allow some inward movement of the trench walls since the trench boxes are usually not in intimate contact with the trench walls. No portion of a critical trench area should be excavated without the rigid shoring being installed immediately as the trench is being excavated. The contractor should take into consideration the additional surcharge loads that may be placed on the trench walls by the adjacent facilities. The shoring system should be designed by a qualified licensed professional engineer employed by or retained by the contractor. The recommendations contained in this subsection are directed toward protection of adjacent facilities during trenching and do not address trench safety for workers. Trench safety should remain the responsibility of the contractor. 9.3 Modulus of Soil Stiffness Values General estimated values of the modulus of soil stiffness (F) for in situ, backfill, and embedment materials are discussed in this subsection. The modulus of soil stiffness is also often referred to as the modulus of soil reaction and is used in semi-empirical formulas, such as the "Iowa"formula, for calculating pipe deflections in backfilled trench conditions for flexible pipe materials. 9.3.1 In Situ E"Values F values for in situ soils at various boring locations were estimated based upon elastic soil parameters determined from uu triaxial test results on relatively undisturbed cohesive samples, and/or SPT N values on in situ sands. These values are presented in Table 9.1. It should be noted that the F values shown in Table 9.1 are applicable only for undisturbed soils at the speck location and depth indicated. These values may be used, along with engineering judgment and experience, to estimate design F values at these locations, once more details of the required pipe installations are known. GREGORY GEOTECHN/CAL 9-2 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS Table 9.1 Estimated Modulus of Soil Stiffness (E')Values for In Situ Trench Wall Materials In Situ Trench Wall Material Hardness or Density Estimated E'(psi) Fat Clay-CH Very Stiff to Hard 700 Fat Clay-CH Finn to Stiff 550 Fat Clay-CH Very Soft to Soft 300 Lean Clay,Sandy Clay-CL Very Stiff to Hard 900 Lean Clay,Sandy Clay-CL Firm to Stiff 800 Lean Clay,Sandy Clay-CL Very Soft to Soft 400 Clayey Sand-SC,Sand-SP Hard,or Dense to Very Dense 1000 Clayey Sand-SC,Sand-SP Very Stiff,or Medium Dense 900 Clayey Sand-SC,Sand-SP Soft to Firm,or Very Loose to Loose 700 Shale—Essentially Unweathered Hard to Very Hard 6000 Shale—Essentially Unweathered Moderately Hard to Hard 4,000 Shale—Essentially Unweathered Very Soft to Moderately Hard 3,000 Note: Refer to Plate A.3 for Soil and Rock Hardness and Strength Terms 9.3.2 Embedment E' Values - The term "embedment" as used in this subsection refers to both pipe bedding and embedment. The actual proposed embedment material is not available for testing at this time. Consequently, The E' values given in Table 9.2 are estimates based upon typical values for the various materials. Determination of more accurate E' values would require testing of remolded samples of the actual proposed embedment material. While the E' values presented in Table 9.2 are believed to be relatively conservative, it is recommended that E' values be confirmed during construction by testing actual proposed embedment materials, for all critical installations. GREGORY GEOTECHN/CAL 9-3 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS Table 9.2 Estimated Modulus of Soil Stiffness (E')Values for Embedment Materials Material Degree of Compaction -% Estimated E' (psi) Class 1 Soil Embedment 95 1,000 Class 2 Soil Embedment 95W 1,500 Class 2 Aggregate Embedment 95 2,000 Flowable Fill NA 3,000 ASTM D 698 ASTM D 4253 Descriptions of the various embedment materials are included in Section 10 TRENCHING, EMBEDMENT AND BACKFILL. 9.4 Lateral Earth Pressure and Backfill-Trench Wall Friction Coefficients Estimated lateral earth pressure coefficients (K) for use in determining the load coefficient (Cd) for trench conditions in the "Marston" formula for embedment and backfill loads on the pipe are presented in Table 9.3. Table 9.3 Estimated Lateral Earth Pressure Coefficients (K)for Embedment and Backfill Materials Material Degree of Compaction % Estimated K Value General Earth Fill 95 0.50 — Class 1 Soil Embedment 95 0.39 Class 2 Soil Embedment 95W 0.31 Class 2 Aggregate Embedment 95 0.29 ASTM D 698 ASTM D 4253 Estimated values of the coefficient of interface friction between the backfill materials and the trench walls (µ')for use in determining Cd in the"Marston"formula are presented in Table 9.4. GREGORY GEOTECHNICAL 9-4 - Report No. R02007 August2003 SECTION 9 PIPELINE CONSIDERATIONS Table 9.4 Coefficients of Interface Friction Between Embedment or Backfill and Trench Wall Interface Friction(g)Values for Embedment or Backfill Material Against Trench Wall Material Hardness or Density of General Class 1 Soil Class 2 Soil Class 2 In Situ Trench-Wall Material Trench Wall Material Earth Fill Embedment Embedment Aggregate Embedment Fat Clay-CH Very Stiff to Hard 0.25 0.30 0.32 0.34 Fat Clay-CH Firm to Stiff 0.23 0.27 0.29 0.31 Fat Clay-CH Very Soft to Soft 0.20 0.24 0.27 0.29 _ Lean Clay, Sandy Clay-CL Very Stiff to Hard 0.31 0.33 0.38 0.41 Lean Clay, Sandy Clay-CL Firm to Stiff 0.28 0.30 0.34 0.38 Lean Clay,Sandy Clay-CL Very Soft to Soft 0.23 0.27 0.30 0.34 Clayey Sand,Sand-SC,SP Dense to Very Dense 0.35 0.40 0.65 0.70 Clayey Sand,Sand-SC,SP Medium Dense 0.32 0.36 0.62 0.65 - Clayey Sand,Sand-SC,SP Very Loose to Loose 0.28 0.33 0..57 0.60 Sound Rock-Rough Surface Hard to Very Hard 0.37 0.40 0.65 0.70 Sound Rock-Rough Surface Moderately Hard 0.35 0.36 0.65 0.70 Sound Rock-Rough Surface Soft 0.33 0.33 0.38 0.40 Note: Refer to Plate A.3 for Soil and Rock Hardness and Strength Terns Interface friction values presented in Table 9.4 represent relatively conservative values for the conditions usually encountered for the materials listed. For non-standard, critical, or unusual conditions, laboratory shear testing of the actual materials should be performed to determine interface friction values. It should be noted that sedimentary rocks such as shale, limestone, and sandstone (among others) may lose strength, soften, and readily slake, if left exposed in an excavation. The interface friction values presented for rock in Table 9.4 are based upon sound rock that is not left exposed to the weather long enough to cause deterioration, which may be only a few days or less in extreme weather conditions. If deterioration of rock trench walls occurs, the interface friction values for very soft to soft fat clay(CH)should be used, instead of the rock values. GREGORY GEOTECHNICAL 9-5 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS The data in this subsection are for trench installations. Providing data for embankment (positive projecting) or similar pipe installations is beyond the scope of Basic Services. These conditions (if any) should be analyzed on an individual basis. 9.5 Pipe-Soil Interaction Analysis It should be noted that analysis of earth pressures on buried pipes by methods such as the "Marston" formula, and analysis of buried pipe deflections by methods such as the "Iowa, formula, are only approximate methods and often do not provide realistic values since the actual soil-pipe interaction and incremental construction cannot be modeled with these semi-empirical methods. Finite Element Method (FEM) analyses of buried pipes which consider the soil-pipe _ interaction and incremental fill placement will yield more accurate results. FEM analyses are beyond the scope of the Basic Services for this project. FEM analyses of selected critical locations can be included as Additional Services, upon request. In pipeline sections where the E' value of the adjacent trench wall is less than the E' value of the pipe embedment material, a composite E' value should be used. The composite E' value may be estimated as follows: (1) Determine the load distribution factor(fd) by either equation (9.1 a) or(9.1 b): For Class 2 Soil Embedment or Class 2 Aggregate Embedment: _ fd = 1+ twin (9.1 a) 0.3 Do For Class 1 Soil Embedment: fd = 1+ 0.8 train (9.1 b) 0.3 Do Where: tmrn =Width in inches of the embedment at the spring line of the pipe Do= Outside diameter of the pipe in inches GREGORY GEOTECHN/CAL 9-6 _ Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS (2) Multiply this result by the E'value of the in situ material in the adjacent trench wall to obtain an adjusted E' value (E'a)for the in situ soil. (3) Add the in situ E'a value to the E' value of the embedment material and divide the result by 2 to obtain the composite E'value (E'c)for use in design. Example: Class 2 Aggregate Embedment E' of embedment= 2,000 psi E' of in situ soil =400 psi D,= Winches t„i, = 12 inches _ fd= 1 + 0.3x12 2 1.67 E'a=400 x 1.67= 668 E'c= (2,000+668) +2 = 1,334 psi This analysis method is based upon the assumption that the embedment zone extends up to a minimum of 0.7 times the outside diameter of the pipe. The E' value to be used for the in situ soil should be the minimum value anywhere in contact with the embedment zone. If either the E' value of the in situ soil, the E'a value, or the E'c value exceeds the E' value of the embedment material, the E'value of the embedment should be used in design. It should be understood that the above analysis is approximate. The method generally produces relatively conservative estimates of E'c values. However, it is recommended that FEM analyses be performed for all critical pipeline sections, as previously stated. In flood-plain areas where the water surface may rise above the ground surface, buoyancy and additional loads due to the higher water surface should be analyzed on a case by case basis. GREGORY GEOTECHN/CAL 9-7 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS 9.6 Thrust Restraint for Pipelines Thrust restraint for pipelines may be provided by concrete thrust blocking or by welded or rigidly connected pipe joints and shear resistance (friction) between the pipe and the enveloping embedment and/or backfill materials. 9.6.1 Thrust Blocking Passive earth pressures acting against the face of thrust blocks and friction on the base of the thrust blocks may be considered to provide thrust restraint for pipelines. Passive earth pressures on the face of thrust blocks should be considered for counteracting lateral forces only if the block is placed in direct contact with undisturbed stiff to hard cohesion soil or undisturbed hard to very hard essentially unweathered shale in a "neat cut" excavation. If the thrust block is constructed by using forms, lean concrete may be placed between the thrust block and the undisturbed wall of the adjacent excavation (after removal of-the forms) in order to provide the direct contact required to consider passive pressure for counteracting lateral movement. The lean concrete should have a minimum 28-day compressive strength of 1,500 psi. Additionally, the thrust block should be a minimum depth of 1.5 feet below the lowest adjacent grade. An allowable passive pressure of (75he + 175) pounds per square foot (psf) per foot of depth can be used in design calculations for undisturbed stiff to hard cohesive soil above the ground- water table. An allowable passive pressure of (180he + 1000) psf per foot of depth for undisturbed, essentially unweathered moderately hard to very hard shale above the ground- water table. These values should be reduced to one-half for conditions below the ground-water table. The term he is the effective depth, which is the depth in feet of the bottom of the thrust block below ground surface, minus 1.5 feet, or he= 0.85 times the depth in feet of the bottom of the thrust block below the ground surface, whichever is less. A safety factor has been applied to the full passive pressures such that the lateral movement required to mobilize the allowable passive pressures listed above will be reduced to approximately 0.02 times the height of the thrust block in full contact with the neat-cut excavation wall. The thrust blocking should be placed so that the resultant of the passive earth pressure will coincide with the resultant of the pipe thrust pressure, based upon a triangular pressure distribution for the block height and a rectangular pressure distribution for soil above the block, T GREGORY GEOTECHN/CAL 9-8 _ Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS assuming the soil above the block acts as a surcharge.A friction factor of 0.3 for mass concrete on undisturbed stiff to hard cohesive soil, or a friction factor of 0.35 for mass concrete on sound, essentially unweathered, moderately hard to very hard shale can be used in design for those portions of thrust blocks with full positive pressure on the base of the block. Friction between the base of the block and the cohesive soil, calculated on the basis of the friction factor given above, should not exceed an upper limiting value of 750 psf. Only long-term dead loads should be considered in calculating the available friction on the thrust block base. Allowable passive pressures for other soil types and conditions should be determined on a case by case basis. These services can be provided as Additional Services, upon request. Thrust blocks should have sufficient reinforcement to resist all shear and moment forces induced in the block by the pipeline thrust. 9.6.2 Restrained Joints Resistance to lateral movement by restrained joints and friction between the pipe and the backfili envelope may be designed as follows. Estimated friction factors between various backfill and pipe materials are presented in Table 9.5. Table 9.6 Estimated Embedment and Backfill Friction Factors for Restrained Joints Friction Factors Pipe Material(Exterior General Class 1 Soil Class 2 Soil Embedment and Surface) Earth Fill Embedment Class 2 Aggregate Embedment Concrete/Mortar 0.30 0.32 0.35 Steel 0.25 0.27 0.30 Plastic-Smooth 0.23 0.25 0.27 Plastic-Rough 0.30 0.32 0.35 Coated*-Smooth 0.25 0.27 0.30 Coated*-Rough 1 0.30 0.32 0.35 * Based upon hard coatings, not soft coatings such as bituminous materials. The friction factors presented in Table 9.5 are relatively conservative values based upon the surface characteristics usually encountered for the various pipe materials listed. For critical and large-project installations, and for unusual pipe materials, it is recommended that shear testing GREGORY GEOTECHN/CAL 9-9 Report No. R02007 August2003 SECTION 9 PIPELINE CONSIDERATIONS be performed on the actual proposed pipe and embedment/backfill materials to more accurately determine the friction factors. It should be noted that a movement between the backfill and pipe (slip) of approximately 0.002 times the restrained pipe length may be required to mobilize full frictional resistance based upon the friction factors listed in Table 9.5. A 20 percent reduction in the friction factors listed in Table 9.5 should reduce the pipe movement to approximately 0.001 times the restrained pipe length. It must be understood that the pipe movements (slip) discussed above are estimates based upon average anticipated conditions. Pipe movements for critical installations should be analyzed using advanced numerical methods (such as Finite Element Methods) on a case by case basis. These analyses are not included in Basic Services, but can be performed as Additional Services, upon request. For General Earth Fill and Class 1 Soil Embedment above the ground-water table, the friction value calculated on the basis of the friction factors given in Table 9.5 should have an upper limiting value of 750 psf. For General Earth Fill and Class 1 Soil Embedment below the ground- water table, the friction value should have an upper limiting value of 600 psf. Due to potential arching of the backfill soil above the pipe, only 50 percent of the weight of the backfill prism above the pipe should be used in calculating the friction value. The weight of the backfill prism, prior to applying the 50 percent reduction, should be the moist unit weight above the ground-water table and the buoyant unit weight below the ground-water table. The ground- water table level to be used in the above calculatibns should be the seasonably-high ground- water table. Only long-term dead loads should be considered in calculating the friction values. 9.7 Expansive Soil Movement Considerations for Pipelines The pipelines will be subjected to expansive soil movements when placed above the ground- water table in expansive clay soils. Based upon the field and laboratory data, vertical soil movements of as much as 3 to 5 inches may occur in the Fat Clay soils along portions of the GREGORY GEOTECHNICAL 9-10 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS pipeline. These soils were encountered in depth intervals that may impact the pipeline in boring B-1. Significant other areas of expansive soils may be present between boring locations. The more critical areas for potential distress to pipelines and appurtenances is where the pipelines go from expansive to non-expansive soils or rock, or from expansive soils to a rigid structure. Flexible connections should be provided in these areas. The potential expansive soil movements can be reduced by undercutting the expansive soil and replacing with non-expansive earth fill. The amount of undercut and geometry of the undercut should be determined on a case by case basis. The construction documents should include a provision for undercutting and replacing with non-expansive earth fill on a unit price basis, with an appropriate quantity. 9.8 Stability of Pipelines Placed in Slopes Refer to Section 5 for a discussion of slope stability related to the proposed pipeline. 9.9 Seismic Considerations The potential for seismic (earthquake or similar ground motion) damage to the pipeline is relatively small. However, this potential should not be ignored. It should be noted that the general site area is in the zone of at least 0.05g effective peak velocity-related acceleration. While this acceleration is relatively low, a major life-line facility such as the proposed siphon pipeline should be designed to survive any anticipated seismic damage. The areas of potential damage may include, but not necessarily be limited to loose sand strata below the water table, steep slope areas, and deep areas of unconsolidated alluvial materials. Specific evaluation of potential seismic damage to the pipeline, and related design recommendations (if required) are beyond the scope of this study. These services can be provided as Additional Services upon request. 9.10 Pipe Jacking and Tunneling/Micro Tunneling Considerations 9.10.1 General Design of pipe jacking and tunneling/micro tunneling sections of the pipeline should be performed by an engineer experienced in these types of installations. This section of the report GREGORY GEOTECHNICAL 9-11 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS includes estimates of parameters that may be used to estimate subsurface conditions which may be suitable for pipe jacking or tunneling/micro tunneling installations. 9.10.2 Soil and Rock Characteristics The general characteristics of the soil and rock at specific boring locations along the proposed pipeline route are presented on the Logs of Borings and on the Generalized Subsurface Profile in Appendix A. Attention are directed to subsection 9.11 Logs of Borings and Generalized Subsurface Profiles, and Section 12 Report Closure, for limitations and intent of the subsurface information. The field test results and selected portions of the laboratory test results are presented on the Logs of Borings. The laboratory shear strength test results are presented in Appendix B. The subsurface data, including field and laboratory test results, may be used, along with engineering judgment and experience, to estimate soil and rock parameters for pipe jacking and tunneling/micro tunneling design by an experienced and qualified engineer. Modulus of Elasticity values were calculated from the stress-strain curves from the unconfined compressive strength test results on the rock cores. The modulus values were secant (Es) values determined at one-half the maximum compressive strength. The ES values were averaged, and the 255i percentile (P26) value was calculated. The P25 value is calculated by taking the average of all values, adding this average value to the lowest individual value, and dividing the result by 2. The Es value calculated for the rock core in Boring B-3 at 64 to 65 feet was very high compared to all the other ES values. Accordingly, this value was discarded and not used in the determination of the P25 value. The average E, value for the shale is approximately 64,850 psi, and the P25 value is approximately 43,450 psi. We recommend use of the P25 value as a maximum ES value for tunnel/micro tunnel design in the shale. 9.10.2.1 Shield Cutting-Edge Tip Resistance Tip resistance of the shield cutting-edge (p$) in cohesive soil or soft rock may be estimated by use of equation 9.2. ps= 6S„ (9.2) GREGORY GEOTECHN/CAL 9-12 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS Where S,, =the undrained shear strength of the soil or soft rock Tip resistance in granular materials may be estimated by use of equation 9.3. p8=6y'Z tan 0 (9.3) Where: y'= Effective unit weight of soil Z= Overburden depth 0= Internal friction angle of soil Angle of internal friction of granular materials may be estimated from Standard Penetration Test (SPT) N values from Table 9.6, where shear test results are not available. Table 9.6 Empirical Values of� Based on SPT N Values Granular Soils Estimated O-Degrees SPT N Value Density Fine Medium Coarse 0-4 Very Loose 26-28 27-28 28-30 5-10 Loose 28-30 30-32 30-34 11-30 Medium Dense 30-34 32-36 33-40 31-50 Dense 33-36 34-38 39-45 >50 Very Dense 37-40 38-40 40-45 9.10.2.2 Thrust Wail Resistance Passive earth pressure may be used to resist thrust-wall reactions for the pipe jacking unit. An allowable passive pressure of (100he + 500) psf per foot of depth above the ground-water table may be used in design calculations for undisturbed, stiff to hard cohesive soil. An allowable passive pressure of (275hg + 2000) psf per foot of depth above the ground-water table for undisturbed, essentially unweathered, moderately hard to very hard shale. These values should be reduced to one-half for conditions below the ground-water table. The term he = depth in feet GREGORY GEOTECHNICAL 9-13 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS below finished ground surface to the bottom of the thrust wall, minus 1.5 feet, or he=0.85 times the depth in feet below finished ground surface to the bottom of the thrust wall, whichever is less. It should be noted that a lateral movement of approximately 0.05 times the height of the thrust wall in contact with the stiff to hard cohesive soil may be required to mobilize the full allowable passive pressure. The thrust-wall and jacking system must be designed to accommodate this movement, or additional factors of safety must be applied to reduce the allowable passive pressure. Calculation of various factors of safety to reduce the movement to different levels is beyond the scope of Basic Services, and should be performed on a case by case basis. Allowable passive pressures for other soil types and conditions should be determined on a case by case basis. These services can be provided as Additional Services, upon request. The allowable passive pressures given in this subsection should not be used for pipe- restraint thrust blocking design due to the significant movements required to mobilize the allowable passive pressures. 9.10.2.3 Frictional Coefficients for Pipe-Soil Interface Frictional coefficients between the soil and pipe relative to jacking forces should be estimated separately for each different soil along the proposed route. Table 9.7 may be used as a general guide for making preliminary estimates of the frictional coefficients for non-lubricated installations. Table 9.7 Estimated Frictional Coefficients Pi a-Soil Interface for Pipe Jacking - Frictional Coefficients Soil Type Concrete Pie Steel Pipe Sand and Gravel 0.80 0.50 Sand 0.78 0.46 Clayey Sand 0.60 0.40 Sandy Clay 0.50 0.35 Fat Clay-Hard 0.37 0.27 Fat Clay-Soft 0.28 0.22 Shale-Soft to moderately Hard 0.50 0.40 - GREGORY GEOTECHNICAL 9-14 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS - Shale-Hand to Very Hard 0.65 1 0.55 Actual frictional coefficients are highly dependent upon actual soil and pipe materials, whether lubricants are used, overcut or undercut ratio, length of drive, and length of idle periods during driving. 9.10.2.4 Long Term Loads on Pipes Long-term loads on pipes installed by pipe jacking and/or tunneling/micro tunneling can be estimated using conventional methods and the results of field and laboratory tests performed for this study. Whether or not the annular space between the pipe and any overcut is grouted, it should be assumed that full earth loads will be acting on the pipe over the long term. The length of time required for the full earth loads to develop is highly dependent on soil or soft rock type and could occur during installation, or may not occur for many months. Load-displacement analyses of the pipe jacking and/or tunneling/micro tunneling installations using FEM analyses can be performed as Additional Services, upon request. 9.10.2.5 Grouting of Overcut Grouting of the annular space (if overcut is used or develops) should be performed if the overcut ratio is such that unacceptable settlements will develop at the surface if full settlement of the soil onto the pipe occurs. Grouting pressures should not exceed 75 percent of the overburden pressure at any location or at any time during grouting, to reduce the potential for surface uplift. 9.10.2.6 Excavation Safety Excavation safety for pipe jacking, tunneling/micro-tunneling, shaft construction, and other such elements of the work is not addressed in this report. Compliance with all applicable safety regulations during construction, including but not limited to OSHA regulations, should be the sole responsibility of the contractor. 9.11 Logs of Borings and Generalized Subsurface Profiles. The Logs of Borings and Generalized Subsurface Profiles represent conditions encountered at the specific boring locations, at the time of drilling. Vastly different subsurface conditions are GREGORY GEOTECHNICAL 9-15 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS often present between boring locations, and significantly different conditions could be present only a few feet from a boring location, or in depth intervals below the boring. Ground-water conditions are likely to vary significantly at the boring locations over time. Soils that were stiff to hard at the time of the field exploration may later become soft due to saturation. Conversely, soils that were soft to firm at the time of the field exploration may later become stiff to hard due to drying. It should be noted that the erosional top of the shale in the river could be considerably below the elevation of shale in the borings on either side of the river. A boring was not performed in the river due to the very high cost of performing the boring in flowing water. This would require a special barge and a very high mobilization cost. The cost of drilling a boring in the middle of the river was estimated to cost more than the entire geotechnical study as performed. The elevation of the shale in Boring B-2 (east side of the river)was approximately 425.5 feet. The top of shale elevation in Boring B-3 (west side of the river) was approximately 429 feet. The survey of the river bottom provided by CDM shows the bottom-of-river elevation at approximately 443 feet at the proposed pipeline location. This is approximately 14 feet above the top of shale elevation in Boring B-3. However, the top of shale in the river could be 10 to 20 feet or more below the shale elevation in Boring B-3 due to erosion action from the river over a long period of time. The erosion would fill with river sediment over time and mask the actual depth to the shale surface in the river channel. These potential (and likely) different subsurface conditions and variations should be considered during pipeline design and should be included and specifically pointed out to the contractor in the construction documents. Attention is directed to Section 12 Report Closure, for additional discussion on the limitations and intent of the subsurface information included in this report. 9.12 Loads and Stresses on Pipes Design or analyses of loads on pipes, and calculations of pipe stresses and deflections, or any other pipe design or analyses are beyond the scope of this study. These services can be GREGORY GEOTECHN/CAL 9-16 Report No. R02007 August 2003 SECTION 9 PIPELINE CONSIDERATIONS _ provided as Additional Services, upon request. Otherwise, the design and analyses of loads, stresses, and deflections related to the pipes should be performed by others. GREGORY GEOTECHN/CAL 9-17 Report No. R02007 August2003 SECTION 10 TRENCHING, EMBEDMENT AND BACKFILL 10.1 General The recommendations in this section are provided as general guidelines for trench excavation, embedment and backfill, as may be required for installation of the pipeline. The term "embedment" as used in this section refers to both the pipe bedding and side-fill material up to a minimum of 6 inches above the top of the pipe. The term "backfill" as used in this section refers to the trench backfill material from the top of the embedment up to the ground surface. This report addresses only trenching, embedment, and backfill for the pipelines. Other earthwork recommendations are contained in other sections of this report 10.2 Trench Excavation Immediately ahead of trench excavation in each section, the trench line should be stripped a minimum depth of 6-inches (or deeper as required) to remove all vegetation and other unsuitable materials. Suitable topsoil from the stripping operation should be properly stockpiled for reuse over the backfilled trench. Trench excavations should be performed to the neat lines and grades shown in the construction documents. It is recommended that maximum trench widths be limited to 1.5 times the average pipe diameter (for round pipe), up to a minimum of 6 inches above the top of the pipe. Trench excavations which exceed the width limits, or where the vertical trench walls are not maintained to a minimum of 6 inches above the top of pipe, should be considered as embankment conditions rather than trench conditions. Care should be taken by the contractor to prevent inducement of surcharges on the trench wall by placing of trench spoil adjacent to the trench. Refer to "Stability of Adjacent Facilities" in Section 9 for information conceming the requirement for rigid trench shoring to limit the potential for damage to adjacent facilities. Trench excavations should remain open the shortest time possible under practical jobsite conditions. Structures, pipelines or other facilities which are constructed prior to or during the currently proposed construction and which require excavation, should be protected from loss of end bearing or lateral support at all times. Provisions should be made in the contract documents for over-excavation and replacement with suitable fill or embedment for areas where unsuitable soil conditions are encountered in pipe trench excavations. GREGORY GEOTECHNICAL 10-1 Report No. R02007 August 2003 SECTION 10 TRENCHING, EMBEDMENT AND BACKFILL This report does not address trench safety considerations for workers. The contractor must comply with all applicable safety regulations concerning trench safety and excavations, including, but not limited to OSHA regulations. Trench safety should remain the sole responsibility of the contractor. A separate bid item should be included in the contract documents for "Trench Safety Systems." 10.3 Classification of Subsurface Materials in Excavations It is our understanding that there will be no separate pay item in the contract documents for any - classification of materials encountered in excavations, including but not limited to solid rock, boulders, cobbles, rock fragments, rock ledges or layers, soil of any classification or moisture condition, and miscellaneous non-hazardous debris. It is specifically pointed out that a wide variety of soils and numerous areas of rock were encountered in the borings drilled for this study. If our understanding is not correct concerning no separate pay item for rock in trench excavations, we should be advised promptly so that we can provide a definition of solid rock for contract document purposes. 10.4 Dewatering of Excavations The design or quantitative analyses of ground-water dewatering systems is beyond the scope of this study. The following information is provided as a guideline only. The contractor should be responsible for selecting and providing appropriate excavation dewatering systems for use during construction. Ground water will be encountered within some of the excavations. The decision as to the method for handling ground water, depends upon such factors as the soil characteristics within the excavation depth, site hydrogeology, adjacent streams or surface water bodies, the size and depth of the excavation, method of excavation (including pipe jacking, boring, and tunneling/micro-tunneling) and side slopes, the proximity of existing structures, their depth and foundation type, and the design and function of the proposed pipeline. Choice of a particular method or a combination of methods for dewatering any given excavation will require an analysis of the subsurface soil and ground-water conditions, the requirements of the work, and the contractor's experience with dewatering excavations. Once these facts are GREGORY GEOTECHN/CAL 10-2 Report No. R02007 August 2003 SECTION 10 TRENCHING, EMBEDMENT AND BACKFILL known, consideration can be given to the various methods available for handling ground water and a selection can be made as to a suitable method.A certain amount of flexibility is important in the dewatering process. The scope of this study did not include an evaluation of construction dewatering requirements; therefore some unanticipated subsurface conditions could exist related to construction dewatering. Regardless of the dewatering method selected, it should be capable of lowering and continuously maintaining the ground-water surface a minimum of 3 feet below the base of all excavations throughout the construction period in the particular area. The contractor should be required to provide adequate personnel and equipment to operate and maintain the dewatering system on a 24-hour basis, as required. 10.5 Trench Embedment and Backfill Placement Trench embedment and backfill for pipelines or other utilities should be properly placed and compacted. Unless specifically recommended otherwise in this report, all cohesive-type embedment materials should be compacted to a minimum of 95 percent of maximum density, at a moisture content between minus 2 and plus 5 percentage points of optimum moisture content, as determined by ASTM D 698, Standard Proctor. These moisture ranges represent the maximum recommended limits. It is possible under some circumstances or with some soils, that a more narrow range, within the recommended limits, will be necessary for the contractor to consistently achieve the recommended density. The contract documents should contain a similar statement notifying the contractor of the intent of the specified moisture range. Unless specifically recommended otherwise in this report, all non-cohesive type embedment should be compacted to a minimum of 95 percent of maximum index density, at a moisture content that will facilitate compaction, as determined by ASTM D 4253, Maximum Index Density and Unit Weight of Soils Using a Vibratory Table (or a manual procedure approved by the Engineer, which has been calibrated to produce similar results to ASTM D 4253). In the event of marginal materials between cohesive and non-cohesive types, the project geotechnical engineer should make the determination of which density-relationship test should be used for control. Cohesive materials should be compacted with appropriate equipment that produces a homogeneous fill by kneading GREGORY GEOTECHN/CAL 10-3 Report No. R02007 August 2003 SECTION 10 TRENCHING, EMBEDMENT AND BACKFILL and dynamic action. Non-cohesive materials should be compacted with appropriate equipment that produces vibratory type compaction. Each placement lift of embedment and backfill materials should be limited to a thickness that will result in a uniform density throughout the lift with the compaction equipment being used. The compaction effort should be controlled in a manner that will prevent excessive stresses or damage to the pipe or adjacent facilities. To this end, lighter equipment may be necessary in the zones immediately adjacent to the pipe, and thinner lifts may be required to achieve the density with the lighter equipment. Traffic should not be allowed over the pipeline until the design thickness of embedment and backfill has been achieved, unless the pipeline is otherwise temporarily protected. The compaction density recommendations listed in this subsection for embedment and backfill are for ordinary, anticipated conditions along the pipeline. Higher densities or more restrictive requirements may be necessary at specific locations or under specific conditions. Examples of locations that may necessitate more restrictive requirements are roadway crossings (if any), locations near existing structures or utilities, and similar locations. Compaction density recommendations for any such specific locations are beyond the scope of this report. These services can be provided as Additional Services on a case by case basis, upon request. 10.6 Field Density Testing A minimum of one field density test should be taken per lift for each 1000 linear feet of trench for all embedment and backfill materials other than flowable fill, with a minimum of two tests per lift. More frequent testing will be required in critical areas, in the beginning of the project as a means to verify that the contractor's placement and compaction methods can consistently achieve the specified densities, and more frequently at other times or locations as recommended by the project geotechnical engineer. The Nuclear method (ASTM D 2922) may be used to determine compaction density of embedment and backfill materials in the trench prior to placement of the pipe, and in the zone above the pipe once the fill placement has reached a minimum thickness of 2 feet above the top of the pipe. The Nuclear method should not be used in the embedment zones adjacent to the pipe. Once the pipe is placed in the trench, the density of all embedment and backfill zones up to 2 feet above the top of pipe should be determined using either the Sand Cone method (ASTM D 1556), Rubber Balloon method (ASTM D 2167), or the Sleeve method (ASTM D GREGORY GEOTECHN/CAL 104 _ Report No. R02007 August 2003 SECTION 10 TRENCHING, EMBEDMENT AND BACKFILL 4564), as appropriate for the material being tested. It is recommended that the construction documents contain a provision for a test section for each different embedment material or technique used by the contractor. The test section should consist of at least 2 sections (joints, lengths) of pipe. The pipe should be installed and the contractor should use his proposed method of placing and compacting the embedment. At least one length of pipe should be carefully removed to allow the integrity of the embedment along the haunches and below the pipe to be evaluated Visually and by in-place density testing to verify that the contractor's method will achieve the specified density and uniformity of the embedment. Additional test sections should be performed for all different embedment materials, or if the contractor proposes to change methods of placement and compaction. The means, methods, and techniques of placement and compaction should be the sole responsibility of the contractor, and the test section should be considered only as a means to verify that the contractor's methods are capable of achieving the specified density. The actual quality of the embedment and backfill, as compacted, should be the responsibility of the contractor and satisfactory results from the test section(s) and field density tests should not be considered as a guarantee of the quality of the contractor's embedment and backfill operations. 10.7 Embedment and Backfill Zones Embedment material should be placed from the bottom of the trench to a minimum of 6 inches above the top of the pipe. The zone above the embedment to the ground surface may consist of backfill material. Embedment material for this project should consist of Class 2 Soil Embedment, or Class 2 Aggregate Embedment, as described below. In embankment or widened-trench conditions,the required Embedment material should extend to a minimum distance of 2 nominal pipe diameters on each side of the pipe. Backfill for all areas beneath present or future structures, pavements, and similar facilities sensitive to expansive soil movements should consist of Class 1 Soil Embedment material. Backfill for all areas more than 5 feet outside the limits of present or future structures, pavements and similar facilities may consist of General Soil Backfill (General Earth Fill). Care should be taken not to use free draining granular material in areas where pipelines enter or pass near structures, to prevent the backfilled trench from becoming a French drain which might allow intrusion of surface or subsurface water beneath structures, pavements or similar facilities. If GREGORY GEOTECHN/CAL 10-5 Report No. R02007 August 2003 SECTION 10 TRENCHING, EMBEDMENT AND BACKFILL a higher class of bedding material is required for the pipelines near or beneath structures or pavements, or in congested areas where compaction is difficult to achieve, flowable fill is recommended for embedment and/or backfill material. Where flowable fill is used, each lift or section should be allowed to reach initial set as required to provide the intended support, prior to the next lift or section being placed. 10.8 Embedment Requirements This subsection includes information for pipelines that have been designed based upon ES — (modulus of elasticity) values of the embedment rather than E' (modulus of soil stiffness) values. The requirements for embedment materials based upon required ES (modulus of elasticity of embedment material)values are presented in Table 10.1 below. Table 10.1 Minimum Embedment Material Type Based Upon Required ES Value Required ES Value(psi) Minimum Embedment Material Type s 1200 Class 1 Soil Embedment s 2000 Class 2 Soil Embedment s 2600 Class 2 Aggregate Embedment s 4000 Flowable Fill Note: The above values are based upon a minimum compaction density of 95%of maximum density(ASTM D 698 or ASTM D 4253,as appropriate). 10.9 Overcutting and Replacement In any areas of the pipeline installation where unsuitable or unstable soils such as soft soils,flowing soils, or soils with a significant number of secondary features (cracks, weak joints, slickensides, etc.), the unsuitable or unstable soil should be removed by overcutting. The limits of the overcut should be to a minimum depth of one nominal pipe diameter below the pipe and to a minimum width of 2 nominal pipe diameters on each side of the pipe. The overcut zone should be refilled with the recommended embedment material, compacted as recommended. A provision should be included in the construction documents for overcutting and refilling with the various embedment GREGORY GEOTECHNICAL 10- Report No. R02007 August 2003 SECTION 10 - TRENCHING, EMBEDMENT AND BACKFILL materials in any unstable areas designated by the engineer, either on a unit price basis or as a subsidiary item. An appropriate quantity should be included in the bid documents. In areas of rock, a minimum overcut of 6 inches should be provided below the pipe to allow for placement of the specified embedment material. We recommended that GREGEO be retained during construction to observe any unsuitable or unstable areas encountered during pipe trench excavations, to provide recommendations for appropriate overcut limits and embedment materials for refilling the overcut. Any areas in which overcutting is required should be considered as embankment conditions rather than trench conditions in determining embedment material requirements. 10.10 Pipe Embedment and Backfill Materials The following information is provided to define the recommended requirements for the various pipe embedment and backfill materials for construction of the project. Soil classifications listed below are in general accordance with ASTM D 2487 —Classification of Soils for Engineering Purposes, unless otherwise indicated. 10.10.1 Class 1 Soil Embedment The Class 1 Soil Embedment should consist of soil materials classified as CL, SC, or SC-SM with a liquid limit of 35 or less, a plasticity index between 8 and 20, a minimum of 20 percent and a maximum of 70 percent passing the No. 200 sieve, a minimum of 85 percent passing the No. 4 sieve, 100 percent passing the 1-inch sieve, and which are free of organics or other deleterious materials. When compacted to the recommended moisture and density, the material should have a maximum free swell value of 0.5 percent and a maximum hydraulic conductivity(permeability) of 1 E-05 cm/sec. Swell and permeability values should be determined by laboratory testing of remolded specimens of the actual materials proposed for the Class 1 Soil Embedment. 10.10.2 Class 2 Soil Embedment The Class 2 Soil Embedment should consist of soil materials Classified as SP, SW, GP, or GW, with a minimum Coefficient of Uniformity (Cu) of 3, a maximum plasticity index of 4, a maximum of 20 percent passing the No. 200 sieve, a minimum of 85 percent passing the No. 4 sieve, 100 GREGORY GEOTECHNICAL 10-7 Report No. R02007 August 2003 SECTION 10 TRENCHING, EMBEDMENT AND BACKFILL percent passing the 1-inch sieve, and which are free of organics or other deleterious materials.The Class 2 Soil Embedment material should have angularity that classifies as angular or subangular as defined by ASTM D 2488. 10.10.3 Class 1 Aggregate Embedment(Not Used in This Report) 10.10.4 Class 2 Aggregate Embedment Class 2 Aggregate Embedment should consist of washed and screened gravel and natural sands or sands manufactured by crushing stones complying with the requirements of ASTM C33, "Standard Specifications for Concrete Aggregates", except that the gradation should be as follows: Sieve Size Square Opening Percent Passing 1/2 inch 100 3/8 inch 95- 100 No. 4 80- 95 No. 8 65- 85 No. 16 50- 75 No. 30 25- 60 Class 2 Aggregate Embedment should have not more than 45% passing any sieve and retained on the next consecutive sieve of those shown above, and its fineness modulus, as defined in ASTM C125, should be not less than 2.3 nor more than 3.1. 10.10.5 Flowable Fill Embedment Flowable Fill Embedment should consist of a low-cement content ready-mix material with high flow properties. The mix should consist of approximately one part Portland cement to three parts fly ash, by weight with sufficient amounts of aggregate, high air generator or foaming agent, and water to produce a 28-day compressive strength in the range of 50 to 200 psi. The flowable fill material should have a maximum hydraulic conductivity (permeability) after curing, of 1 E-05 cm/sec as GREGORY GEOTECHNICAL 10-8 Report No. R02007 August 2003 SECTION 10 TRENCHING, E WMBEDMENT AND BACKFILL determined by laboratory testing of representative sampll,,---�s of the material. The material should have an initial set time (walkable surface) of 24 hours or 1 ess. The flowable fill should provide full support to pipelines, adjacent earth walls, structures, or c=�ther such facilities, after initial set, but should be of a low enough compressive strength after- reaching final strength to allow future excavation with ordinary small power excavation equipmeq�w- It. The contractor should be required to submit an appropriate mix design along with laboratory —test results on the flowable fill prior to beginning work on this item. 10.10.6 General Soil Backfill The General Soil Backriill (also referred to a General Earth Fill in this report) may consist of any soil materials which have a minimum plasticity index of 8, a is—ninimum of 20 percent passing the No. 200 sieve, a minimum of 85 percent passing the No. 4 -4--==.ieve, and which are free of organics or other deleterious material. 10.10.7 Geotextiles and Filter Aggregates In areas where open-work gravel or other highly porous in situ materials are encountered in the pipe trench, a geotextile or filter aggregate layer should loft --me used to separate the pipe embedment from the highly porous zones. The geotextile or filter agqW joregate should also be used around pipe joints if replacement of embedment around old pipe oc--cours where the old pipe may have poor joints that will allow finer embedment materials to migrates through the joints. The geotextile and/or filter aggregate should be designed on a case by case bads,depending on site specific conditions. 10.10.8 Compliance Testing Representative samples of the actual embedment and R=-=wackfill materials proposed for use in the various pipe-trench zones should be initially tested for c-- vaompliance with the recommendations by the project geotechnical engineer, prior to use of the materials as embedment or backfill. The testing program should continue through construction as --mag means to verify that the materials being used as embedment and backfill continue to meet the rec:--©mmended requirements. 10.10.9 Acceptance of Imported Embedment and Bay Will Materials Any embedment or backfill materials imported from off-site sources should be tested for compliance with the recommendations for the particular— application and approved by the project GREGORY GEOTECHNICAL 10 9 Report No. R02007 August 2003 SECTION 10 TRENCHING, EMBEDMENT AND BACKFILL geotechnical engineer prior to the materials being used. The owner should also require the contractor to obtain a written, notarized certification from the landowner or supplier of each proposed off-site borrow or supply source stating that to the best of their knowledge and belief there has never been contamination of the borrow source site with hazardous or toxic materials. The certification should be furnished to the owner prior to proceeding to furnish soils to the site. It is also recommended that the contractor be required to provide the services of an EPA approved laboratory to perform, as a minimum, a toxic contaminant scan of composite soil/aggregate samples representative of each separate proposed borrow source, in accordance with EPA protocol for the list of contaminants contained in 40 CFR, Part 261, Appendix Vill, by EPA methods SW-846, prior to importing the borrow material. Any potential off-site soil/aggregate borrow on which the test results indicate the presence of contaminants above background levels should be rejected. Soil materials derived from the excavation of underground petroleum storage tanks should not be used on this project. 10.11 Soil Corrosion Potential Refer to Section 6 of this report for information on soil corrosion potential. 10.12 Erosion and Sediment Control All disturbed areas should be protected from erosion and sedimentation during construction, and all permanent slopes and other areas subject to erosion or sedimentation should be provided with permanent erosion and sediment control facilities. All applicable ordinances and codes regarding erosion and sediment control should be followed. 10.12.1 Erosion Control for Pipeline in River Channel We recommend stone riprap erosion protection over the pipeline crossing of the river channel if _ the open cut option is selected. The riprap should conform to general recommendations for riprap slope protection presented in Section 5 of this report. The minimum thickness of the riprap layer should be 5 feet, with a minimum of 9 inches of crushed stone bedding material. The top of the riprap should be 1-foot below the river bed. A geotextile should be installed underneath the bedding material, as recommended in Section 5. 1 ? GREGORY GEOTECHNICAL 10-10 Report No. R02007 August 2003 SECTION 11 CONSTRUCTION OBSERVATION 11.1 Construction Observation In any geotechnical study, the design recommendations are based on a limited amount of information about the subsurface conditions. In the analysis, the geotechnical engineer must assume the subsurface conditions are similar to the conditions encountered in the borings. However, quite often during construction, anomalies in the subsurface conditions are revealed. Therefore, it is recommended that GREGEO be retained to observe earthwork, foundation placement, pipeline installation, and coordinate with the selected construction-materials testing firm during the construction phase of the project. This enables the geotechnical engineer to stay abreast of the project and to be readily available to evaluate unanticipated conditions, to conduct additional tests if required and, when necessary, to recommend alternative solutions to unanticipated conditions. CDM and the City should coordinate closely with GREGEO during construction to facilitate observation of critical items at the project site, and review of appropriate submittals related to geotechnical items. Until these construction phase services are performed by GREGEO, the recommendations contained in this report on such items as required locations and limits of overcutting and embedment materials for refilling of unstable areas along the pipeline, final foundation bearing elevations, and other such subsurface related recommendations should be considered as preliminary. Construction phase geotechnical observation and coordination of materials testing should commence by the project geotechnical engineer at the outset of the project. Experience has shown that the most suitable method for procuring the construction materials testing services is for the owner or the owner's design engineers to contract directly for these services, rather than requiring the contractor to contract for these services. This results in a clear, direct line of communication between the owner and the owner's design engineers and the geotechnical engineer. GREGORY GEOTECHN/CAL 11 -1 Report No. R02007 August 2003 SECTION 12 REPORT CLOSURE 12.1 Report Closure The borings for this study were staked by GREGEO, using approximate taping methods from existing topographic features. CDM arranged for the staked locations to be surveyed and the coordinates and elevations of the staked locations were provided to GREGEO by CDM. The actual boreholes were placed as close as practical to the staked locations. The locations and elevations of the borings should be considered accurate only to the degree implied by the methods used in their determination. The boring logs shown in this report contain information related to the types of soil and rock encountered at speck locations and times and show lines delineating the interface between these materials. The logs also contain our field representative's interpretation of conditions that are believed to exist in those depth intervals between the actual samples taken. Therefore, :these boring logs contain both factual and interpretive information. Laboratory soil classification tests were also performed on samples from selected depths in the borings. The results of these tests, along with visual-manual procedures were used to generally classify each stratum. Therefore, it should be understood that the classification data on the logs of borings represent visual estimates of classifications for those portions of each stratum on which the full range of laboratory soil classification tests were not performed. It is not implied that these logs are representative of subsurface conditions at other locations and times. With regard to ground-water conditions, this report presents data on ground-water levels as they were observed during the course of the field work. In particular, water level readings have been made in the borings at the times and under conditions stated in the text of the report and on the boring logs. It should be noted that fluctuations in the level of the ground-water table can occur with passage of time due to variations in rainfall, temperature and other factors. Also, this report does not include quantitative information on rates of flow of ground water into excavations, on pumping capacities necessary to dewater the excavations, or on methods of dewatering excavations. Unanticipated soil conditions at a construction site are commonly encountered and cannot be fully predicted by mere soil samples, test borings or test pits. Such unexpected conditions frequently require that additional expenditures be made by the owner to attain a properly designed and constructed project. Therefore, provision for some contingency fund is recommended to accommodate such potential extra cost. GREGORYGEOTECHN/CAL 12-1 Report No. R02007 August 2003 SECTION 12 REPORT CLOSURE The analyses, conclusions and recommendations contained in this report are based on site conditions as they existed at the time of our field exploration and further on the assumption that the exploratory borings are representative of the subsurface conditions throughout the site; that is, the subsurface conditions everywhere are not significantly different from those disclosed by the borings at the time they were completed. If, during construction, different subsurface conditions from those encountered in our borings are observed, or appear to be present in subgrades or excavations, we must be advised promptly so that we can review these conditions and reconsider our recommendations where necessary. If there is a substantial lapse of time between submission of this report and the start of the work at the site, if conditions have changed due either to natural causes or to construction operations at or adjacent to the site, or if proposed pipeline locations or depths are changed, or if structure locations or finish grades are changed, we urge that we be promptly informed and retained to review our report to determine the applicability of the conclusions and recommendations, considering the changed conditions and/or time lapse. Further, it is recommended that GREGEO be retained to review those portions of the plans and specifications for this project that pertain to geotechnical recommendations contained in this report as a means to determine whether the recommendations have been interpreted as intended. In addition, we are available to observe construction, particularly the compaction of earth fill and pipe embedment, installation of foundations and pipelines, and such other field observations as might be necessary, related to recommendations contained in this report. The scope of our services did not include any environmental assessment or investigation for the presence or absence of wetlands or hazardous or toxic materials in the soil, surface water, ground water or air, on or below or around the site. The scope of our services also did not include any evaluation of the site for suitability for the intended construction or use, other than those items specifically addressed in this report. This report has been prepared for use in developing an overall design concept. Paragraphs, statements, test results, boring logs, diagrams, etc., should not be taken out of context, nor utilized without a knowledge and awareness of their intent within the overall concept of this report. Statements, conclusions, and recommendations in this report are directed to the Owner and the Owner's design engineers, and not to bidding contractors. The context of the statements, GREGORY GEOTECHN/CAL 12-2 Report No. R02007 August 2003 SECTION 12 REPORT CLOSURE conclusions, and recommendations have been conveyed to the Owner and the Owner's design engineers through various meetings, and correspondence, and should not be interpreted by bidding contractors to have singular meaning or interpretation for bidding purposes. The reproduction of this report, or any part thereof, supplied to persons other than the owner, should indicate that this study was made for design purposes only and that verification of the subsurface conditions for other purposes including, but not limited to determining difficulty of excavation, trafficability, depth to shale surfaces between boring locations, suitability of on site soil materials or quantities, etc., is the responsibility of bidding contractors or others. This report has been prepared for the exclusive use of CDM and the City of Fort Worth for speck application to.design of this project. This report may not be copied or reproduced in whole or in part for any other purpose than for this specific project without the expressed written permission of Gregory Geotechnical. The only warranty made by us in connection with the services provided is that we have used that degree of care and skill ordinarily exercised under similar conditions by reputable members of our profession practicing in the same or similar locality. No other warranty, expressed or implied, is made or intended. GREGORY GEOTECHNICAL 12-3 Report No. R02007 August 2003 GREGORYGEOTECHNICAL August 2003 Report No.R02007 CITED REFERENCES 5.1 Department of the Army, Office of the Chief of Engineers, Corps of Engineers, Design and Construction of Levees, EM 1110-02-1913, 31 March 1978. 5.2 "GSTABL7®, Limit-Equilibrium Slope Stability Analysis Program Using Modified Bishop, Simplified Janbu, or GLE Method of Slices-with Reinforcement, Tiebacks, Piers/Piles, Soil Nails, Applied Forces, and Boundary Loads in English or Sl units, " Gregory Geotechnical Software, Copyright 2001-2003 by Garry H. Gregory, P.E. 8.1 Johnson, L. D., and D. R. Snethen (1979), "Prediction of Potential Heave of Swelling Soil," Geotech. Testing Journal, ASTM, vol. 1, no. 3, Sept., pp. 117-124. 8.2 O'Neill, M. W., and O. I. Ghazzaly (1977), "Swell Potential Related to Building Performance," JGED, ASCE, vol. 103, GT 12, Dec., pp. 1363-1379. GENERAL REFERENCES GA American Heritage Dictionary, Second College Edition, Houghton Mifflin Company, Boston, 1985. G.2 Dictionary of Scientific and Technical Terms, Parker, Sybil P., Editor in Chief, McGraw-Hill Book Company, Third Edition, 1984. G.3 Dictionary of Geological Terms, Bates, Robert L. and Jackson, Julia A., Editors, American Geological Society, Anchor Press/Doubleday, Third Edition, 1984. GA American Society for Testing and Materials (ASTM), 1997 Annual Book of Standards, Volume 4.08, Soil and Rock (1). G.5 American Society for Testing and Materials (ASTM), 1997 Annual Book of Standards, Volume 4.09, Soil and Rock(11); Geosynthetics. G.6 Department of the Navy, Naval Facilities Engineering Command, "Soil Mechanics," Design Manual 7.1, May 1982. G.7 Department of the Navy, Naval Facilities Engineering Command, "Foundations and Earth Structures," Design Manual 7.2, May 1982. G.8 Department of the Army, Office of the Chief of Engineers, Corps of Engineers, Laboratory Soils Testing, EM 1110-2-1906, 30 November 1970, with change 2 dated 20 August 1986. RA GREGORY GEOTECHNICAL August 2003 Report No.R02007 G.9 Fisher,W. L., Director(1972), Bureau of Economic Geology, The University of Texas at Austin, Geologic Atlas of Texas - Dallas Sheet. G.10 Texas Highway Department(TEX-DOT), Bridge Division, Foundation Exploration and Design Manual, July 1972, Revised June 1974. G.11 Das, Braja M. (1983). "Advanced Soil Mechanics," McGraw-Hill Book Company, New York, New York. G.12 Pipeiacking and Microtunnellina, Thomson, James C., Chapman and Hall, 1993. G.13 An Introduction to Trenchless Technology, Kramer, Steven R., McDonald, William J., and Thomson, James C., Chapman and Hall, 1992. G.14 Joint Committee of the American Society of Civil Engineers and the Water Pollution Control Federation, "Design and Construction of Sanitary and Storm Sewers," ASCE-Manuals and Reports on Engineering Practice No. 37, WPCF Manual of Practice No. 9, 1969. G.15 American Water Works Association, Manual of Water Supply Practices, "Concrete Pressure Pipe,"AWWA M9, 1979. G.16 Soil-Steel Bridges, Abdel-Sayed, George, Bakht, Baidar, and Jaeger, Leslie G., McGraw-Hill, Inc., 1994 G.17 "Modulus of Soil Reaction Values for Buried Flexible Pipe," Howard, Amster, K., Journal of the Geotechnicai Engineering Division, Proceeding of the American Society of Civil Engineers, Volume 103, No. GT1, January 1977, pp. 33-43. G.18 Soil Enaineering, Hardy, Richard L. and Spangler, Merlin G.; Harper and Row, Publishers, Inc.; New York, N.Y., Fourth Edition, 1982. G.19 CANDE-89 USERS MANUAL, Publication No. FHWA—RD-89-169, US Department Of Transportation, Federal Highway Administration, June 1989. G.20 Boutrup, Eva, "Computerized Slope Stability Analysis for Indiana Highways," Volume I, Final Report, JHRB, Indiana State Highway Commission and Purdue University, Project No. C-36-36L, December 1977. G.21 Das, Braja M. (1983). "Advanced Soil Mechanics," McGraw-Hill Book Company, New York, New York. R.2 GREGORY GEOTECHNICAL August 2003 Report No.R02007 G.22 Abramson, Lee W., Lee, Thomas S., Sharma, Sunil, and Boyce, Glenn M., 1996. " Slope Stability and Stabilization Methods," John Wiley & Sons, Inc., New York, NY. R.3 GEOTECHNICAL REPORT APPENDIX A GREGORY GEOTECHNICAL May 2003 REPORT NO.:R02007 TERMS AND SYMBOLS USED ON LOGS OF BORINGS AND TEST PITS SOIL CLASSIFICATION(1 OF 2) BASIC SOIL-ROCK-MATERIAL SYMBOLS ® Fat Clay ® Lean Clay In Elastic Silt IN Silt Solid Waste , aPoorly-Graded Well-Graded .p• Poorly-Graded © Well-Graded Sand Sand po.a Gravel Gravel ® Shale Weathered ® Limestone ® Weathered Shale Limestone Sandstone � Mudstone ® Asphalt R'••;°�::.�. Concrete Siltstone Claystone Note: Symbols on logs may be a combination of the basic symbols, as required. SOIL GRAIN SIZE U.S.Standard Sieve 6" 3" 3/4" 4 10 40 200 Gra l I Sand Boulders Cobbles Coarse I Fine Coarse Medium Fine Silt Clay i 52 76.2 19.1 4.76 2.00 0.420 0.074 0.002 millimeters PLASTICITY CHART 60 / 50 a CH or ON Pal-- 30 v /CL or OL y 20 MH oi ON a 10 / 4 C L ML o OL 00 10 1620 30 40 50 60 70 60 90 100 110 LIQUID LIMIT(LL) SOIL STRUCTURE TERMS Siickensided-Having planes of weakness that appear slick and glossy Fissured-Containing shrinkage or relief cracks,often filled with silt or fine sand,usually more or less vertical Pocket-Inclusion of material of different texture that is smaller than the diameter of the sample Parting-Inclusion less than 118 inch thick extending through the sample Seam-Inclusion 118 inch to 3 inches thick extending through the sample Layer-Inclusion greater than 3 inches thick extending through the sample Laminated-Sample composed of alternating partings or seams of different soil type Interlayered-Sample composed of alternating layers of different soil type Intermixed-Sample composed of pockets of different soil type,and layered or laminated structure is not evident Calcareous-Having appreciable quantities of calcium carbonate PI ATF A 7 GREGORY GEOTECHNICAL May 2003 Report No. R02007 TERMS AND SYMBOLS USED ON BORING LOGS SOIL CLASSIFICATION(2 OF 2) STANDARD PENETRATION TEST(SPT) A 2-in.-OD, 1-3/8-in.-ID split spoon sampler is driven 1.5 ft into undisturbed soil with a 140-pound hammer free falling 30 in.After the sampler is seated 6 In. into undisturbed soil, the number of blows required to drive the sampler the last 12 in. is the Standard Penetration Resistance of"N"value,which is recorded as blows per foot as described below. Blows Per Foot Description 25 25 blows drive sampler 12 inches,after initial 6-inch seating interval. W5" 50 blows drive sampler 5 inches,after initial 6-Inch seating interval. Ref/3" 50 blows drive sampler 3 inches,during initial seating Interval. NOTE: To avoid damage to sampling tools,driving is limited to 50 blows during or after seating interval. DENSITY OF GRANULAR SOILS STRENGTH OF COHESIVE SOILS Pocket Descriptive *Relative Penetrometer Blows/Foot(SPTITHD) Term Density,% **Blows Per Foot(SPT) Term tsf (approximate) Very Loose <15 0 to 4 Very Soft <0.25 0 to 2 Loose 15 to 35 5 to 10 Soft 0.25 to 0.50 2 to 4 Medium Dense 35 to 65 11 to 30 Firm 0.50 to 1.00 4 to 8 Dense 65 to 85 31 to 50 Stiff 1.00 to 2.00 8 to 16 Very Dense >85 >50 Very Stiff 2.00 to 4.00 16 to 32 Hard >4.0 >32 *Estimated from sampler driving record. **Requires correction for depth,ground-water level,and grain size. SHEAR STRENGTH TEST METHODS UC=Unconfined Compressive Strength Test UU=Unconsolidated-Undrained Triaxial Test (both reported as undrained shear strength-kso Pocket Penetrometer(unconfined strength—tsf) Pocket Vane(undrained shear strength—tsf) TERMS INDICATING ESTIMATED PERCENTAGES OF SOIL INCLUSIONS Trace—Less than 5% Few—5 to 10% Little—15 to 25% Some—30 to 45% Mostly—50 to 100% SEDIMENTARY ROCK HARDNESS TERMS Hardness THD Cone Penetration Test Basis: Undrained Shear Strenath Basis: Visual—Manual Basis: (inches Per 100 Blows) (1/2 UC Test Strength—ksf) (Scratch Test Observation) Soft >5 <10 Can be scratched with fingernail Moderately Hand 3-5 10-20 Easily scratched with knife Hard 1-3 20-40 Difficult to scratch with knife Very Hard 0.25-1 40-100 Very difficult to scratch with knife Extremely Hard <0.25 >100 Extremely difficult to impossible to scratch with knife Note:Hardness terms for soil and rock are for relative comparison of the various samples,and are not Intended to be used as an indication of the ease or difficulty of excavation or of excavation stability. Hardness terms on the logs may be based upon a combination of the test and observation methods listed above,and upon field observations. Information on each boring log is a compilation of subsurface conditions and soil or rock classifications obtained from the field as well as from laboratory testing of selected samples. Strata have been interpreted by commonly accepted procedures.The stratum lines on the logs may be transitional and approximate in nature.Water level measurements refer only to those observed at the time and places indicated,and can vary with time,geologic condition,or construction activity. PLATE A.3 REPORT NO. R02007 I j � ` B-5 ' � 80X O i - 1,` B-4 I BOX w �b. ( (APPROX.) LEGEND =APPROX. BORING LOCATION B_3 I 1 NOTE:BORING B-92-4 DRILLED BY FUGRO-McCLELLAND IN 1992 ' B-�2 BOX E— APPROX.BORING LOCATIONS&ELEVATIONS rm)ors POINT NQ, ELEV. C ORDINATES B-1 N-6969160 BOX ED B-1 484.0 E-2384303 a•sm+ B-2 478.0 N-6969212 w•-�Yv� i E-238425 / B-3 472.0 N-6969347 / N-6969395 eox `4 8-4 473.0 E-2384022 B-5 474.8 N-6969442 / � B-92-4 484.7 N-6968990_ 84330 r , B-92-4 �,,�P�� OF•7F a r GA RY H;.GREGO Y. { Y( _ r ct>t,►raoc �••A 57143 NOT TO SCALE ��sso�k E��., '� SCHEMATIC ONLY- NOT FOR CONSTRUCTION NOTE:BASE PLAN,ELEVATIONS&COORDINATES PROVIDED BY CDM Q� ZY/ GREGORYGEOTECHNICAL PLAN OF BORINGS Geotechnica/Engineering and Consulting PLATE E A■1 2001 West 44th Avenue,Stillwater,OK 740744 TRINITY RIVER SIPHON PROJECT-CITY OF FORT WORTH-VCWWTP Phone:405-747-8200 Fax 405-747-8201 FORT WORTH,TEXAS REPORT NO.:R02007 GREGORY GEOTECHNICAL ::.> START DATE:11-25-02 WATER NOT ENCOUNTERED DURING LOG OF BORING NO. 13- 1 END DATE:11-25-02 DRILLING. CDM-Trinity River Siphon Protect COMPLETION DEPTH(FT):10.00 VCWWTP,Fort Worth,TX TYPE:Auger LOCATION:See Plate A.1 Moved approx. 14 ft NW of staked location. O hN F iR st Vt 7R O V t = O N J a� 0-4 �a. z >d W N W3LL o m SOIL ROCK o �," Lu i=d 0" " , 51 m a v CLASSIFICATION = ¢W 3 -J f °z vQ, z`L-'1 Ra o z O 0 � � �— atG $ V p O z a. EXISTING SURFACE ELEVATION(Approx.):484.0 a. h 4.0 FAT CLAY(CH),dark grayish brown,with tannish gray medium grained sand seams,with occasional calcareous Inclusions, hard 4.5+ 4.5+ 15 54 17 37 94 113 17.74 uc 5 -Soil Box Resistivity Test Results @ 5-6 It=814 ohm-cm 15.28 uu 4.5+ 477.0 LEAN CLAY(CL),dark grayish brown,with tannish gray 7.0 18 48 14 34 89 120 7.15 uc medium-grained sand seams,with occasional calcareous 3.5 Inclusions,very stiff 7.24 uu -Soil Box Resistivity Test Results @ 7-9 It 9 834 ohm-cm 12 120 10 ————————————————————— 474.0 10.0 Note:Encountered hard material at 5 to 10 feet below surface when attempting to advance boring at 7 locations near original location.Could not penetrate hard material with augers.Possible concrete or large stone r1prap7 0 c? 0 r UJ w o: f7 'a ( C7 0 Q 0 KEY: THIN WALLED TUBE SEEPAGE LEVEL Plate A. 4 w -T WATER LEVEL REPORT NO.:R02007 - GREGORY GE0TECHNICAL START DATE:11-23-02 WATER LEVEL OBSERVED AT 35.0 FT UPON LOG OF BORING NO. B-2 END DATE:11-23-02 COMPLETION OF DRILLING ACTIVITIES. CDM-Trinity River Siphon Project COMPLETION DEPTH(FT):70.00 VCWWTP,Fort Worth,TX TYPE:Auger LOCATION:See Plate A.1 o ye y I� 9 W. X Ce >U- ~ x t F Wig m SOIL ROCK o � F� V z ��� it 1�a in ii ci CLASSIFICATION x F ;0 °t "'"' w �Fy G U z N � c� 3 a �j °' EXISTING SURFACE ELEVATION(Approx.):478.0 y °' R i 4.0 SANDY LEAN CLAY(CL),dark grayish brown,slightly 3.5 calcareous,with calcareous nodules,very stiff to hard 18 38 15 23 67 107 4.83 uc -Soil Box Resistivity Test Results @ 1-2 ft=1090 ohm-cm 4.5+ 4.5+ 4.5+ -color changes to light brown and becomes sandier at 4 to 5 5 4.25 ft 472.0 4.0 LEAN CLAY WFTkFSKND(CL),brown end tan,calcareous, 6.0 4.5+ with a few fine gravel,stiff 13 32 12 20 78 109 5.41 uc -ten sand seam at 7.6 ft 4.5+ 13 110 7.42 uu 4.5+ 10 _ --- 468.0 CLAY WIT 4.5+ LEAN H SAND(CL),dark brown,sOghtly 10.0 4.5+ calcareous,hard 466.0 4.5+ LEAN CLAY(CL),dailc brown,slighty calcareous herd 12.0 18 49 15 34 97 109 11.41 uc 4.5+ -Soil Box Resistivity Test Results @ 12-13 ft-722 ohm-cm 4.5+ 15 _ __ as3.o 4.5+ LEAN CLAY(CL), fight brown,slIjhtty calcareou_s,with 15.0 4.5+ calcareous inclusions,stiff to hard 4.25 16 31 12 19 88 111 3.46 uc 3.5 16 112 5.03 uu 1.5 20 2.75 I0.10 2.75 456.0 2.75 LEAN CLAY WITH SAND(CL),light brown,slightly 22.0 15 33 12 21 71 112 2.05 uc 2.25 calcareous,with calcareous inclusions,stiff to very stiff 2.25 25 3.25 3.25 2.5 17 35 12 23 74 112 2.98 uc 2.5 17 108 3.82 uu 0.75 -firm at 29 to 30 It _ 448 0.40 30 2.25 SANDY LEAN CLAY(CL),brown to reddish brown,silty,with 30.0 2.75 calcareous inclusions,sttff to very stiff 1.25 ij � 1.5 19 30 10 20 65 110 1.65 uc coy 1.25 35 -- - _ - ------ - 443.0 w SAND,light brown,wet,loose to very loose 35.0 ED 19 34 g 0 rr 0 KEY: CME TUBE BAG THD CONE V SEEPAGE LEVEL Plate A. 5a w H0 .S.AUGER SPLIT BARREL ROCK CORE WATER LEVEL 0 REPORT NO.:R02007 GREGORY GEOTECHNICAL START DATE:11-23-02 WATER LEVEL OBSERVED AT 35.0 FT UPON LOG OF BORING NO. B-2 END DATE:11-23-02 COMPLETION OF DRILLING ACTIVITIES. CDM-Trinity River Siphon Protect COMPLETION DEPTH(FT):70.00 VCWWTP,Fort Worth,TX — TYPE:Auger LOCATION:See Plate A.1 o y � 3� o ma. SOIL/ROCK O � � 0� "_ a c a 05 ma UP CLASSIFICATION = 3 ° t � a8 �p O V Z0 U -J a aN a a ?� CONTINUED 45 50 _ __ — 425.5 15 15 55 SHALE(Grayson),medium gray,with tan In top 3",herd 52.5 (15-19-36) 2.13"/100 55 (12-50-50) 87 81 68.45 uc 13 126 1.75"/100 60 (12-50-50) 92 -core damaged by sand Intrusion Into core barrel.Rotary 73 wash to clean hole. 15 121 16.52 uc 14 123 26.45 uc 1.6"/100 65 (12-60-50) 95 90 14 122 14.25 uc 0.757100 15 128 58.49 uc 70 (12-50-50) ————————————————————— 408.0 70.0 a C? z 'a c; n N Q� Q KEY: CME TUBE BAG THD CONE SEEPAGE LEVEL oH.S.AUGER SPLIT BARREL ROCK CORE WATER LEVEL Plate A. 5b c� REPORT NO.:R02007 GREGORY GEOTECHNICAL START DATE:11-21-02 WATER LEVEL OBSERVED AT 26.0 FT UPON LOG OF BORING NO. B-3 END DATE:11-21-02 COMPLETION OF DRILLING ACTIVITIES. CDM-Trinity River Siphon Protect COMPLETION DEPTH(FT):70.00 VCWWTP,Fort Worth,TX TYPE:Auger LOCATION:See Plate A.1 o 3 WALL o SOIL R jr OCK o ��a� � �� Ua a � LL m CLASSIFICATION FUj 3 IL �� ga o z 4Qa 0 a as ouzl ILEXISTING SURFACE ELEVATION(Approx):472.0 a. - 0.0 SANDY LEAN CLAY(CL),light brown,very soft to stiff 05 0.75 . 0.5 14 27 9 18 62 118 3.67 uu 3.5 14 115 2.29 uu 1.25 0.85 5 1.6 1.5 1.25 464.0 13 4.5 LEAN CLAY WITH SAND(CL),light brown,hard 8.0 13 29 14 15 74 116 8.7 uc 4.5 10 __ 462.0 2.0 LEAN CLAY WITH SAND(CL),light to medium brown,s6S 10.0 1.75 to hd 18 103 1.52 uc 1.75 16 28 13 1 15 78 115 1.02 uu 1.25 4.5 15 __ a57.o 1.5 LEAN CLAY WITH SAND(CL),medium to dark brawn,very 15.0 0.20 1 5 soft to stiff 1.5 20 33 14 19 71 101 2.0 uu 0.5 0.0 0.35 20 - __ 452.0 0.75 LEAN CLAY WITH SASD(CL),dark brown,with Ti tUe 20.0 0.0 gravel,very soft to soft 0.75 M 0.0 22 31 12 19 74 98 0.979 uu 0.0 -- - --- ---- 425.0 25 7 ,1 SAND,brown and medium gray,with aUttle fine to coarse ,0 12 7 (8-5-2) gravel,wet,loose -with intedayered clay at 28 ft 443.5 5 28.5 30 - ---- - _ 442.0 SAND,light gray,with a li8e fine to coarse gravel,wet,very 30.0 loose 4 t•,:' 23 24 ~o (1-2-2) coy 35 0 IL 44 c�v Q •. KEY: CME TUBE H.S.AUGER m ROCK CORE SEEPAGE LEVEL oSPLIT BARREL THD CONE = WATER LEVEL Plate A. 6a REPORT NO.:R02007 GREGORY GEOTECHNICAL r: START DATE:11-21-02 WATER LEVEL OBSERVED AT 26.0 FT UPON LOG OF BORING NO. B- 3 END DATE:11-21-02 COMPLETION OF DRILLING ACTIVITIES. CDM-Trinity River Siphon Project COMPLETION DEPTH(FT):70.00 VCWWTP,Fort Worth,TX TYPE:Auger LOCATION:See Plate A.1 Z LL � c LL az W X a �" c � �2C� iSOIL/ROCK o -Jxm = < �� Z92 I�U IL aN Y YO F 0 IL CONTINUED W I a 58 . ;J:�. -4"Gravel layer at 42.5 ft,medium dense ——— 429.0 (15-22-36) SHALE(Grayson),medium grey,with slickensides, 43.0 moderately hard to very hard 45 r/1o0 50 (12-50-50) ss"noo 55 (12-23-50) 85 16 122 22.0 uc sa - 14 121 14.45 uc 13 124 24.06 uc 13 123 18.51 uc 0.25"/100 60 (12-50-50) 92 92 0.757/100 12 128 42.33 uc 65 (12-50-50) 95 93 0.75"/100 9 136 118.9 uc 70 (12-50-50) ————————————————————— 4 7 .0 0.0 0 t? 0 ., CD it C9 'a O Q¢' w KEY: CME TUBE H.S.AUGER m ROCK CORE V SEEPAGE LEVEL wSPLIT BARREL THD CONE -T WATER LEVEL Plate A. 6b a 0 1 REPORT NO.:R02007 GREGORY GEOTECHNICAL START DATE:11-20-02 WATER LEVEL OBSERVED AT 23.0 FT UPON LOG OF BORING NO. B-4 END DATE:11-21-02 COMPLETION OF DRILLING ACTIVITIES. CDM-Trinity River Siphon Project COMPLETION DEPTH(FT):70.00 VCWWTP,Fort Worth,TX TYPE:Auger LOCATION:See Plate A.1 p O y3 t F a de ye R O R }a. t s _ ,3 'g o $ SOIL/ROCK o �j� �Z " � Z , oa < WLL W m CLASSIFICATION = F 3 �'� IL 5ro� z� o v Z � v � -J a— a2G 3 v a EXISTING SURFACE ELEVATION(Approx.):473.0 w a SANDY LEAN CLAY(CL),brown,with medium gray sand seams,calcareous,very stiff to hard 4.0 21 111 1.53 uc 12 33 13 20 66 124 5.95 uu 4.5 4.5+ 5 4.5+ 465.0 12 119 7.95 uu _ 4.5+ LEAN CLAY WITH SAND(CL),brown,with medium gray 8.0 12 33 12 21 74 4.5+ sand seams,calcareous,very stiff to herd 10 4"hard layer at 13 ft 15 Ref/0" __ _ _— — — — — 458.0 (50) SANDY LEAN CLAY(CC),brown,with medium grey Band 15.0 18 32 14 18 66 108 1.82 uu 1 seams,calcareous, stiff 18 108 1.77 uc -hit hard object at 15 ft-offset boring west to original staked location on alignment and continued drilling. 20 21 45 13 32 68 0.40 2.10 ds 1.0 25 —— — —— 448.0 15 ;; SAND,light brown,wet to very wet,very loose to medium 25.0 18 46 (5-8-7) dense -augers advanced to 32 ft under their own weight In very wet - loose sand 30 0 Cr w 35 C9 g(L -- b KEY: THIN WALLED TUBE SPLIT BARREL BAG SEEPAGE LEVEL plate A. 7a rn w H.S.AUGER ROCK BIT THD CONE = WATER LEVEL REPORT NO.:R02007 GREGORY GEOTECHNICAL ::.> Nw START DATE:11-20-02 WATER LEVEL OBSERVED AT 23.0 FT UPON LOG OF BORING NO. B-4 END DATE:11-21-02 COMPLETION OF DRILLING ACTIVITIES. CDM-Trimly River Siphon Project COMPLETION DEPTH(FT):70.00 VCWWTP,Fort Worth,TX TYPE:Auger LOCATION:See Plate A.1 N � C ��nnS N -J QC 3� ye U:R ra Z:R a tu wSLL d COSOIL/ROCK ma. c Co a W CLASSIFICATION = F o f -J Q z� x v Z u, y K c> J 2Z 3 =W CONTINUED a encountered denser send at 42.5 ft 45 — —m —— 428.0 50/5.7T SHALE(Grayson),mediu to dark gray,moderately hard to 45.0 (7-30-50) very hard 3.51100 24 99 50 (14-50-50) 3.0"/100 55 (13-50-50) 1.25"/100 60 (12-50-50) 0.75"/100 65 (13-50-50) 0.471100 70 (12-50-50) --------------------- 403.0 70.0 0 rr 0 w 0 a. 0 ti g 0 rr m U KEY: THIN WALLED TUBE SPLIT BARREL BAG SEEPAGE LEVEL -- 0 H.S.AUGER ROCK BIT THD CONE WATER LEVEL Plate A. 7b U' REPORT NO.:R02007 p® �+ GREGORY GEOTECHNICAL START DATE:11-22-02 WATER LEVEL OBSERVED AT 30.0 FT UPON LOG OF BORING NO. B- 5 END DATE:11-22-02 COMPLETION OF DRILLING ACTIVITIES. COMPLETION DEPTH(FT):70.00 CDM-Trinity River Siphon Protect VCWWTP,Fort Worth,TX _ TYPE:Auger LOCATION:See Plate A.1 h LL t x Gf c� �a z� }a w v=i� WALL � 0 SOIL/ROCK o �" F" c W ° CLASSIFICATION a a. W. a t a.t "o N z ' Y W ma U CO M HW 0 a� Sz 4 O ru W 0 o zo O Z�[ a EXISTING SURFACE ELEVATION(Approx.):474.E yr a 1.5 LEAN CLAY(CL),light to medium brown,with sand partings 1 5 and pockets,stiff a 15 39 15 24 85 112 2.37 uc -Soil Box Resistivity Test Results C 1-2 ft 1354 ohm-cm 472.8 2.25 SANDY LEAN CLAY(CL),Iig6t to medium brown,with send 2.0 13 25 12 13 59 C.792 ds 2.0 partings and pockets,soft to very stiff 0.5 5 4.5 __ 468.E SAND,light gray,with a little fine gravel,wet,loose to 6.0 medium dense r 10 5 (4-2-3) i• 6 15 (4-3.3) ;.;. 6 :: :f. 23 39 r48 (3-2-4) ':'•' interlayered clay at about 20 ft - 20 454.E 8 20.0 11 33 17 33 7 :. 25 (3-3 4) 17 tom'" 17 27 30 _ _ 444'E SAND,light gray,with a few gravel,very wet,free flowing, 30.0 'Y loose 0 - 0 35 n•;.�>'. 0. C) " KEY: CME TUBE H.S.AUGER THD CONE SEEPAGE LEVEL aSPLIT BARREL BAG ROCK CORE 1 WATER LEVEL Plate A. 8a ' REPORT NO.:R02007 GREGORY GEOTECHNICAL START DATE:11-22-02 WATER LEVEL OBSERVED AT 30.0 FT UPON LOG OF BORING NO. B- 5 END DATE:11-22-02 COMPLETION OF DRILLING ACTIVITIES. COMPLETION DEPTH(FT):70.00 CDM-Trinity River Siphon Project VCWWTP,Fort Worth,TX TYPE:Auger LOCATION:See Plate A.1 yLLyJ zLL �n�y C ~o m W Q xCx JALL ° SOIL I ROCK o � Zio aWa Z C CLASSIFICATION _ LL g Z 8 aN a CONTINUED °' a ——— 432.8 SHALE(Grayson),,Ilght gray,moderately hard to very herd 42.0 45 33 (8-14-19) 0.5"/100 50 (12-50-60) -man rotary wash at 50 it 2.25"/100 55 (12-50-50) 97 95 15 119 15.37 uc _ 2.257100 60 (12-60-60) 87 80 12 1301 42.42 uc 1.07100 65 (12-50.50) 98 97 12 128 31.11 uc - 0.257100 8 136 58.54 uc 70 (12-50-50) ---------------------- 404.8 70.0 F c 0 LU c� IL' 0 a N O Q KEY: CME TUBE H.S.AUGER THD CONE SEEPAGE LEVEL 0 SPLIT BARREL BAG ROCK CORE WATER LEVEL Plate A. 8b - GREGORY GEOTECHNICAL 490 0 100 200 250 30 4 450 500 550 600 490 B-1' B-92-4 480 ........................:..............:..............:...............:..............:..............:..............:.............. ...�.2........ ......... ........... ..................... ..................... 480 e;s B 4 B=3 470 .................. ......... ......... ........................... ................................ ... ........... ........... ........... ... ..................... 470 460 .................. :y.............. ......... ........ ........... ... ........... .......... ........... ... ..................... 460 ;. 450 .................. ......... ......... .......................... ........... _ ...................... .......... ..................... .........................450 O N W440 :............ .:. ........... ... ..................... .440 P•. 430 ......... ......... _ ........... .......... ........... 430 420 .................. ......... ......... ............................. ... ........... .............................. ................. .420 410 .......................................... ..................... 410 400 400 0 50 100 150 200 250 300 350 400 450 500 560 t 0 Distance Along Baseline Borehole North East Elev. Depth B-1 6969160 2384303 484.0 10.0 B-2 6969217 2384255 478.0 70.0 DISTANCES: s B-3 6969347 2384082 472.0 70.0 Beginning p GENERALIZED SUBSURFACE PROFILE 13-4 6969395 2384022 473.0 70.0 Ending 600 a B-5 6969442 2383962 474.8 70.0 VIEWING ANGLES(degrees): CDM-Trinity River Siphon Project " B-92-4 6968990 2384330 484.7 60.0 Horizontal 0.0 Vertical 0.0 VCWWTP, Fort Worth, TX g Position North East Left,Front 6969451 2383970 REPORT NO. DATE PLATE Right, Front 6969022 2384390 o Left,Back 6969451 2383970 a Right,Back 6969022 2384390 R02007 May 2003 A. 9 REFERENCE INFORMATION ONLY Fug ro-McClelland Log of Boring No. 4 From Fug ro-McClelland Report No. 0401-2393 October 30, 1992 (Re-designated on Plates A.1 and A.9 in the Current GREGEO Report as B-92-4) Copied and included in this Report with permission of The City of Fort Worth and Freese and Nichols, Inc. Report No.0401 2393 s"u�a •= �-c Water Fnrit Noticed: N/A Depth to water. - Cov4"on Depth 60.0' Date: February 19,1992 Caved Depth - Type: wet Rotary Date. - 7:Mrretes BadM— Piezom InstaW- U. Locatiom: N 403X0;E 2,108,338 o a yE3 fit•. {-i -� . to �umQ SurfE -484T o: a. iac aa- Ni- ��'O..- z� o°' WaS F S In H. 3pp Q W�1 Q �H �Q.F�i oD- -9 J W ra 3g J'� O� 4cQ fn STRATUM DESCRII'ITOI�t cmi is�-m 5.51 FRY CIAY, stiff,Bray aid tan,with sand 20 L6podm P -with mestone ffiagments to 0S 23 L8 P -with rods to P 5 1 18 33 P LS U 26 20 P -with catamous 1 nodules below 8'- at]Ilf 26 97 200 Q 10 -geay and brown balm IT -%ftargaouic material and calca<eoas nodules �� 26 54 18 35 L8 P 1S � 24 2A pi -with ferrous nodules below.V 29 92 L7 Q .r 25 459.7 JA F CIAX,staff brow wit$n, ferrous nodules and 25.0 few sand pockets(Alluviom) -brown_ana gray to 2P LS P 30 i - sided 3 r do 3lr 67 7l 45 2A P -widh nodules below 33' 27-35 2. Q i 22 LB P 40 -veryambelow43' 2.0p LOG OF BORING NO. 4 PROPOSED LEVEE MODIFICATIONS VILLAGE CREEK WASTEWATER TREATMENT PLANT FORT WORTH,TEXAS PLATE 68 l'-r 1.'J.1:1, /':i � r�/1�I :�l1!I.1 1:• I .�Y. I'I�1 LJ Il VX �.: LI .•1•I.. .IL,.1. I1,1 I., ,i'1 .:� '-1 I. M----_MM ®R M M M M m MM L r A IN •, 11. 11 ,'J Iit ;r I ====©mMMMMMMMM MMMMMMMM MMMMMMMM lu '� MUMM� MMMMMMMM MMMMMMMM MMMMMMOM MMMMMMMM MMMMMMMM MMMMMM� MMMMMMMM MMMMMMMM ■ MMMMMMM MMMMMM� MMMMMMMM MIMMMMM- 'MMMMM ■� MMMMMM� MMMMMMMM �■MMMMM M MMMMMMMM MMMMMMMM MMMMMMMM MM MMMMM MMMMMMMM MMMMMMMM MMMMMM� MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM MMMMMMMM GEOTECHNICAL REPOR APPENDIX B Plate B.1.1 of 5 Class Percent Unit Dry Boring No. Depth Moisture Liquid Plastic Plasticity Group <No.200 Weight Pocket Pocket Undrained Content Limit Limit Index Symbol Sieve (pd) Pen(tso Vane(tso Shear(kso B- 1 0.0 4.0 13-1 1 2.0 1 1 4.5+ 13- 1 4.0 15 54 17 37 CH 94 113 4.5+ 17.74 uc B- 1 5.0 15.28 uu T 13-1 6.0 4.5+ 13- 1 7.0 18 48 14 34 CL 89 120 7.15 uc _ B- 1 8.0 3.5 7.24 uu 13- 1 9.0 12 120 B-2 0.0 4.0 B-2 1.0 18 38 15 23 CL 67 107 3.5 4.83 uc B-2 2.0 4.5+ B-2 3.0 4.5+ B-2 4.0 4.5+ B-2 5.0 4.25 B-2 6.0 4.0 B-2 7.0 13 32 12 20 CL 78 109 4.5+ 5.41 uc B-2 8.0 13 110 4.5+ 7.42 uu B-2 9.0 4.5+ B-2 10.0 4.5+ B-2 11.0 4.5+ 13-2 12.0 18 49 15 34 CL 97 109 4.5+ 1 11.41 uc B-2 13.0 4.5+ B-2 14.0 4.5+ B-2 15.0 4.5+ B-2 16.0 4.5+ 13-2 17.0 16 31 12 19 CL 88 111 4.25 3.46 uc 13-2 18.0 16 112 3.5 5.03 uu B-2 19.0 1.5 B-2 20.0 2.75 0.10 B-2 21.0 2.75 13-2 22.0 15 33 12 21 CL 71 112 2.75 2.05 uc B-2 23.0 2.25 ' B-2 24.0 2.25 B-2 25.0 3.25 B-2 26.0 3.25 B-2 27.0 17 35 12 23 CL 74 112 2.5 2.98 uc B-2 28.0 17 108 2.5 3.82 uu B-2 29.0 0.75 0.40 B-2 30.0 2.25 o B-2 31.0 2.75 B-2 32.0 1 1.25 B-2 33.0 19 30 10 20 CL 65 110 1 1.5 1.65 uc a GREGORY GEOTECHNICAL Summary of Laboratory Test Results 2001 WEST 44th AVENUE Project: CDM-Trinity River Siphon Project 4 STILLWATER, OKLAHOMA 74074-2415 "#{ ''4"' Telephone: 405-747-8200 Location: VCWWTP, Fort Worth,TX g 4 Fax: 405-747-8201 :> Report No: R02007 Plate B.1.2 of 5 Class Percent Unit Dry Boring No. Depth Moisture Liquid Plastic Plasticity Group <No.200 Weight Pocket Pocket Undrained Content Limit Limit Index Symbol Sieve (pcfl Pen(tsO Vane(tso Shear(kso B-2 34.0 1.25 B-2 35.0 B-2 37.0 19 34 B-2 38.0 - B-2 51.5 B-2 52.0 15 15 B-2 52.5 ' B-2 54.0 B-2 55.0 B-2 56.0 68.45 uc B-2 57.0 13 126 B-2 59.0 B-2 60.0 13-2 62.0 15 121 16.52 uc B-2 63.0 14 123 26.45 uc B-2 64.0 B-2 65.0 13-2 66.0 14 122 14.25 uc 13-2 69.0 15 128 58.49 uc B-3 0.0 0.0 B-3 1.0 0.5 0.75 B-3 2.0 14 27 9 18 CL 62 118 0.5 3.67 uu B-3 3.0 14 115 3.5 2.29 uu B-3 4.0 1.25 0.85 B-3 5.0 1.5 B-3 6.0 1.5 B-3 7.0 13 1.25 B-3 8.0 13 29 14 15 CL 74 116 4.5 8.7 uc B-3 9.0 4.5 B-3 10.0 2.0 13-3 11.0 18 103 1.75 1.52 uc B-3 12.0 16 28 13 15 CL 78 115 1.75 1.02 uu B-3 13.0 1.25 B-3 14.0 4.5 B-3 15.0 1.5 0.20 B-3 16.0 1.5 B-3 17.0 20 33 14 19 CL 71 101 1.5 2.0 uu B-3 18.0 0.5 B-3 19.0 0.0 0.35 o B-3 20.0 0.75 B-3 21.0 0.0 B-3 22.0 0.75 a "g GREGORY GEOTECHNICAL Summary of Laboratory Test Results 2001 WEST 44th AVENUE Project: CDM -Trinity River Siphon Project STILLWATER, OKLAHOMA 74074-2415 ,;. Location: VCWWTP, Fort Worth,TX • •,: ,;sir:;;,:�.f Telephone: 405-747-8200 }''4V f;:�. Fax: 405-747-8201 '.�.<:s w Report No: R02007 Plate B.1.3 of 5 Moisture Liquid Plastic Plasticity Symbol Sieve Class Percent Un Sievea it(pcf)Dry pocket Pocket Undrained - Boring No. Depth Content Limit Limit Index Group < Weight pen(tsf Vane(tsf Shear(ksf 13-3 23.0 22 31 12 19 CL 74 98 0.0 0.979 uu B-3 24.0 1 1 0.0 B-3 25.0 12 7 B-3 26.5 B-3 28.5 65 23 B-3 30.0 B-3 32.0 23 24 B-3 33.5 B-3 42.5 _ B-3 44.0 B-3 49.0 B-3 54.0 B-3 55.0 16 122 22.0 uc 13-3 56.0 14 121 14.45 uc 13-3 57.0 13 124 24.06 uc 13-3 58.0 13 123 18.51 uc B-3 59.0 B-3 60.0 -' B-3 64.0 12 128 42.33 uc B-3 65.0 B-3 69.0 9 136 118.9 uc B-4 0.0 B-4 1.0 21 111 4.0 1.53 uc 13-4 2.0 12 33 13 20 CL 66 124 5.95 uu B-4 3.0 4.5 B-4 4.0 4.5+ B-4 6.0 4.5+ B-4 1 7.0 12 119 7.95 uu B-4 8.0 12 33 12 21 CL 74 4.5+ B-4 9.0 4.5+ B-4 10.0 B-4 14.5 13-4 15.0 18 32 14 18 CL 66 108 1.82 uu 13-4 16.0 18 108 1.25 1.77 uc B-4 17.0 13-4 20.0 21 45 13 32 CL 68 0.40 2.10 ds B-4 21.0 1.0 _ B-4 22.0 B-4 25.0 18 46 B-4 26.5 B-4 45.0 B-4 46.5 a Summary of Laboratory Test Results w � GREGORY GEOTECHNICAL rY r'Y 2001 WEST 44th AVENUE Project: CDM-Trinity River Siphon Project STILLWATER, OKLAHOMA 74074-2415 '" ``' Location: VCWWTP, Fort Worth,TX :::.'.. .t<: {``' Telephone: 405-747-8200 Fax: 405-747-8201 Report No: R02007 Plate B.1.4 of 5 Moisture Liquid Plastic Plasticity Class Percent Unit Dry Pocket Pocket Undrained - Boring No. Depth GroupLimit Limit Index Group < a Weight ght Sieve Symbol Sieve Pen(tso Vane(tso Shear(kso B-4 48.0 B-4 49.0 24 99 B-4 50.0 B-4 54.0 B-4 55.0 B-4 59.0 B-4 60.0 B-4 63.0 B-4 64.0 B-4 65.0 B-4 69.0 B-5 0.0 1.5 B-5 1.0 15 39 15 24 CL 95 112 1.5 2.37 uc B-5 2.0 13 25 12 13 CL 59 2.25 0.792 ds B-5 3.0 2.0 - B-5 4.0 0.5 B-5 5.0 4.5 B-5 10.0 16 48 B-5 11.5 B-5 12.5 B-5 13.5 6 32 B-5 15.0 B-5 16.0 B-5 17.0 23 39 R B-5 18.5 B-5 19.0 .� B-5 20.0 11 33 B-5 21.5 B-5 23.0 17 33 -- B-5 23.5 B-5 25.0 B-5 27.0 17 27 B-5 28.5 B-5 42.0 B-5 45.0 B-5 46.5 B-5 49.0 B-5 50.0 B-5 54.0 o B-5 55.0 B-5 57.0 15 119 15.37 uc B-5 59.0 IL g GREGORY GEOTECHNICAL Summary of Laboratory Test Results 2001 WEST 44th AVENUE Project: CDM-Trinity River Siphon Project >< STILLWATER, OKLAHOMA 74074-2415 Telephone: 405-747-8200 Location: VCWWTP, Fort Worth, TX 10 Fax: 405-747-8201 Report No: R02007 Plate B.1.5 of 5 Moisture Liquid Plastic Plasticity Class Percent Unit Dry pocket Pocket Undrained Boring No. Depth Content Limit Limit Index Group <No.200 Weight Symbol Sieve (pcf) pen(tsf) Vane(tsf) Shear(ksf) B-5 60.0 13-5 63.0 12 1 130 42.42 uc B-5 64.0 B-5 65.0 B-5 66.0 12 128 31.11 uc B-5 69.0 8 136 58.54 uc 0 — m 5 IL $ GREGORY GEOTECHNICAL Summary of LaboratoryTest Results 2001 WEST 44th AVENUE Project: CDM-Trinity River Siphon Project STILLWATER, OKLAHOMA 74074-2415 Telephone: 405-747-8200 Location: VCWWTP, Fort Worth,TX '- Fax: 405-747-8201 Report No: R02007 y=0.69x DIRECT SHEAR TEST REPORT 15.0 ' '-------`----•------- ------;......i-------`-_---`----- -------`----- `------i F ,Q 10.0 ...................... rA ♦ Peak ----- ------ ------ ---- -- -- -- -- -- --- ® Residua( w ; . . y ------'--....�-------`------=----------•---`------�-------`--••--•----- •-----`------'--.._. .._..._:.__ ._ near eak) ' - .Linear Residual) N 5.0 ---------•----,----- ; ----- ........:-- '. . •- ------ ------;------ ------- ----..;......;------- ...... 0.0 0.0 5.0 10.0 15.0 y=0.66x Normal Stress - psi w=1 PEAK STRENGTH PARAMETERS = 34.6 deg c = 0.0 psi RESIDUAL STRENGTH PARAMETERS = 33.4 deg c= 0.0 psi SPECIMEN NO. 1 2 3 4 10.0 INITIAL 9.0 0 3.6 Moisture Content-°/ Dry Density-pcf ; 109.9; s.o --. .... s ;.. Diameter-inches ; 2.501, r- 7.0 ._.. . Height-inches 1.16' ) 9 6.0 Y ...... ;............... AT TEST Final Moisture ure- k ;1 210;m i i Dry Density-pcf ; 118.5- t 4.0 - Height-End of Consol.(in.) 1 1.071 � Height-End of Shear(in.) 0 1.031 i Normal Stress-psi , 10.01 9- I Residual Failure Stress-psi ; 6.6; i 0.0 Strain Rate-inches/min. 0.000301' I It 0.0 0.1 0.2 0.3 0.4 0.5 Peak Failure Strain-% 14.0: Deformation(in) Residual Failure Strain% 16.00� Dry Density attest based on initial moisture and height at end of consolidation. TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: CD,DS-S-3 PROJECT:Trinity River Siphon Project SAMPLE TYPE:Split Barrel-compacted into ring LOCATION:VCWWTP-Fort Worth,TX DESCRIPTION:Sand,with fine gravel,light gray PROJECT NO:CDM02007 SAMPLE LOCATION:B-5,10-11.5 ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.65 DATE:May 2003 LL:NA PL: NA PI:NP Percent-200:48 GREGORYGEOTECHN/CAL PLATE: B-DS.3 REMARKS:Specimen Submerged During Test DS-Report-02007-8-5,10-11.xis TRIAXIAL SHEAR TEST REPORT 150 -Hti-Ft- 1_I_LJ_L J_L1_I_L _I_LJ-L1 _L1_I_LJ__1J_L1J.. 1_I_LJ_L J_L1_I_L _I_LJ_L1_ 1_I_ 1 _I 11_1 1__ I t_I 11_ 1_I_1 1_I_ I_I 1 I_I 1 I 1 1 1 11 1 1 1 I I 1 1 1 11 1 1 1 I l l l i I I 1 1 1 I I I I I 1 1 1 1 1 I-1 1 FT T-I-r1-r '7-r r-1-r -I-r1-rT -ri-i-r1--r1-rT-1` 1-rr1-r 1-rT-I-r -1-r1'rT- 125 1_1_LJ-L J-L1J_L -I-LJ_L1 -L1_1-LJ- LJ_L 1J- 1-1-LJ-L J_L1_I_I- -LLJ-L1 1�_LJ_I_ � L1J_L J_LJ_L1 _L1J_L!_ 1J_L1J- 1_I_LJ_L J_L1J_L _LLJ_I_1� 11 1 1 1 I-I 11 1 1 1 1 1 1 1 1 1 1 1 I I I 1 1 11 1 1 1 11 1 1 1 1 1 1 1 1-- - -- -- -- - - -- - - -- -- - - -- -- .-I-rt 55 100 1�_LJ-1_ J_L1!_L _ J-L1 _LIJ_LJ__IJ_LIJ_ I_LJ_L J-LIJ-L -LLJ_i-1_ I I I I I I I I I I I I I I I I I I I I I I I 1 1 I I I I l t l l 11 1 1 1 T-1-r1-r '1'rT_- -I r1-rT -rT-1-r1--T1-rT-1` T-I- -r 1-r-it r -I-T1-rT- Y-I-r-I-f- ti-1- I-t -1-t'1^rt -rY-I-r-1--r1-1-t-I- Y-I-tY -I-1-Y-I-t -f-t-I-1-t- W 1-1-LJ_� -A- 1-1-1- _1-L J_1_t -1_1_I_LJ_ LJ_{-4-1_ 1_t_LJ_1_ J_{-1_t_L _{-L J_{-;_ W I I 1 I I I I I I I I I I I I I 11 1 1 I I I � 75 I I I I I IF I I I I I I I I I I I I I 1 1 1 1 1 I I IT I I I 1 1 1 11 1 1 1 co I-I-r-1 -1-17-1-r -i T1-i T -rT-1-r1- Ti-rT-I- 1-r T1-I- -1-1 T-1-i- -I-T1-rT- (C 7-1-r1- 1-r T-1-r -1-r-1^rT -r7-Y-ri- T-1-r T-1- -1-r r-1-r -1-r -1'r -rr-1-rT- Q +-1-N� - -1-1-+-1-N -1-+�-F-+ -N+-I-1 -I--+�-1-+-1- a-1-+�-t- -F+ i-1- -I-+�-F+- u= 1_t-L _1_ J_L1_I-L _I-LJ_L1 _L1_I-LJ_ LJ_L1-1_ 1_I_LJ_L J_L1_ L _1_LJ_L1 W 50 I I ! I I I I I I I I I I I I I I I I I I I I I I I I 1 1 I I I I I I I I I I 11 1 1 1 I I I I I I I 11 1 1 I I I I I I I I I I I I I I I I I I I T-1- 1-1 1-r T-I-r -rr 1-rT -r7-I-r1- r1-r T-1-- 1-I-r1-r 1-r7-t- -1-r1-rT +-I Fa-N -1-N+-I-N -I-+-1 + -N-4-1-1-a- +-I-t-+-1- -4-1-1--1-I- -I-1-4-1-N -I-+-1-F-+- 1_I LJ-L J-L1J_L _I_1J-L1 _L1_I-LJ_ LJ_LIJ_ J-I_LJ-L J_L1_I_L _t_LJ-L1- I 1 I 1 I I I I I I I I I I -I 11_I 1 I I I I I I I I I I I I I I I I l l t l 1 1-i I-► -�-1 I-1-I -I I-1 1 11 1 11--I -�I-I- 1-�i t-� -i-I -1-� -�1- 25 +--1 + -t-+-1-+-1- + +-1- -1-1-+-1 -1-1--+-1-t- L- +. -I--L1-- - 1 1 1 1 I IT-1-r1-r 1-rT-i-r -rT- 0 0 30 60 90 120 150 180 210 240 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 106.1 psi SPECIMEN NO. 1 2 3 4 240 INITIAL rI11 T T r r I-111 T r r r TTrr Trrr Moisture Content-% i 12A i i rr1-1 r111 210 rl 1 T T r r-:-:-1-1 T r r r Dry Density-pcf 119.61 a 180 r 1-1 T T r r 1-111 T T r r Diameter-Inches ; 1.401 -t1 TTrr-1-1-1-1TT r r 1 1 i i In '11 7 T r r 1-1-1T T r r Height-Inches , 3.481 w 150 ATTEST I-11 TTrr n-11 TTrr ~ 120 1-ri T r r r 1-111 T r r r Final Moisture-% 12.41 -1-1 T r r r 1-111 I r r r Dry Density-pcf ; 119.61 1-1-1 TTrr 1-11-1 Irrr 1 1 I 1 90 Calculated Diameter(in.) 1 1.401 g r1-11 7rrr I-111 Trrr I I I 1 wrt-11 t t r r I-1-1-1 t r r r Height-inches 11 3.481 1 i 0 60 r1-tti t t r r-;-;-1-1t r r r- Effect.Cell Pressure-psi 1 5.01 30 1-I-t-1- -tt r r r1-1-1 t r r I Failure Stress-psi 212.191 r1-Iti t t t r -1-1 t r r I- Total Pore Pressure-psi ' 5.01, rl-Iti t t r r -1-1 t t r. P I I i 0 Strain Rate-Inches/min. 1 0.040001 1 1 0 5 10 15 20 Failure Strain-% 3.51 1 1 AXIAL STRAIN-% a, Failure-psi ; 217.191 63 Failure-psf ; 5.00' TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: UU Triaxial-UU-5 PROJECT:Trinity River Siphon SAMPLE TYPE:Shelby Tube LOCATION:Fort Woth,TX DESCRIPTION:FAT CLAY(CH),dark grayish brown PROJECT NO:CDMO2007 SAMPLE LOCATION:B-1,7-9ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATE:4/24/03 LL:48 PL:14 PI:25 Percent-200:94 GREGORYGEOTECHN/CAL I PLATE: B-UU.1 REMARKS:Tested at natural moisture. I It IJ19rM17-R-1 d5 Ylc PROJECT NO:CDM02007 PROJECT:Tdnity River Siphon CLIENT:CDM SPECIMEN NO,1 DESCRIPTION:FAT CLAY(CH),dark grayish brown Cell Pressure: 5.0 psi Back Pressure: 0.0 psi Eff.Stress: 5.0 psi Dia. : 1.40 in Area: 1.538 In Ht. 3.48 in Weight: 188.7 g Ao. Def. Load U AU Load e s% Corr. Aa a3i Gil ate:a3 pI q (in) Dial (psi) (psi) abs) QnAn) Area (psi) (psi) (psi) (psi) (psi) IN (in ) 1 0.0000 0.00 0.00 0.00 0.00 0.0 0.0 1.538 0.00 5.00 5.00 1.000 5.00 0.00 2 0.0100 57.00 0.00 0.00 57.00 0.003 0.29 1.542 36.96 5.00 41.96 8.391 23.48 18.48 3 0.0200 106.00 0,00 0.00 106.00 0,006 0.58 1.547 68.53 5.00 73.53 14.706 39.26 34.26 4 0.0300 152.00 0.00 0.00 152.00 0.009 0.86 1.551 97.98 5.00 102.98 20.596 53.99 48.99 5 0.0400 193.00 0,00 0.00 193.00 0.012 1.15 1,556 124.05 5.00 129.05 25.810 67.03 62.03 6 0.0500 226.00 0.00 0.00 226.00 0.014 1.44 1.560 144.84 5.00 149.84 29.968 77.42 72.42 7 0.0600 255.00 0.00 0.00 255.00 0.017 1.73 1.565 162.95 5.00 167.95 33.590 86.47 81.47 8 0.0700 279.00 0.00 0.00 279.00 0.020 2.01 1.570 177.76 5.00 182.76 36.552 93.88 88.88 9 0.0800 297.00 0.00 0.00 297.00 0.023 2.30 1.574 188.68 5.00 193.68 38.735 99.34 94.34 10 0,0900 312.00 0.00 0.00 312.00 0.026 2.59 1.579 197.62 5.00 202.62 40.524 103.81 98.81 11 0.1000 323.00 0.00 0.00 323.00 0.029 2.88 1.583 203,98 5.00 208.98 41.797 106.99 101.99 12 0.1100 332.00 0.00 0.00 332.00 0.032 3.16 1.588 209.05 5.00 214.05 42.810 109.52 104.52 13 0.1200 338.00 0.00 0.00 338.00 0.035 3.45 1.593 212.19 5.00 217.19 43.439 111.10 106.10 14 0.1300 338.00 0.00 0.00 338.00 0.037 3.74 1.598 211.56 5.00 216.56 43.312 110.78 105.78 15 0.1400 333.00 0,00 0.00 333.00 0.040 4.03 1.602 207.81 5.00 212.81 42.562 108.90 103.90 16 0,1500 319.00 0.00 0.00 319.00 0.043 4.31 1.607 198.48 5.00 203.48 40.695 104.24 99.24 17 0.1600 282.00 0.00 0.00 282.00 0.046 4.60 1.612 174.93 5.00 179.93 35.986 92.46 87.46 GREGORYGEOTECHNICAL UU-02007-8-1.4-5_xis PLATE:B-UU.1a TRIAXIAL SHEAR TEST REPORT 75 J_1_LJ_ -LJ_1_11 _1_LJ_1_ J_1_1-J- -I-J_1_I_ _1_I-J-L__J_L_1-J_ _I_1_L_I_ I I 1 1 I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t t 1 I 11 1 1 1-T-r1- -r1-T-r 'T-r1-T' 1-T'r1- -r,-T-1- -r-rl'r---1-r-I'T- -I'T'r'1- J-1_LJ_ _LJ_1-L__1-LJ_1_ J-1_LJ- -LJ-1-I_ _L_L.J-L__J_L_I_J_ -1_J_L_I_ I I I I I I I I I I I IIT I II I I I I I �-T-r-I- -r�I-T-r--r-rI1I-r- 4-r-r1I- -r1I- Ir-,- -r-JrI -11-r--�-r-,-�I- -,-�-Ir-,- 60 I I I I I I I I 1 1 1 1 I I I I I I I I I l t l 1 1 1 1 1 1 1 1 r-,--1-r---1-r-,-�- -,-4-r-,- 4-1_ 1._1-J-L--4-L-1-J_ _I_J_L_I- I I I I I I I I I I I I I I I I I I I I I I I I 11 1 1 I I I I 4.-1-J-L--J-L-1--1- -1--1-L-I- 45 I I i l 11 1 1 I I I I I I I I I I I 1 1 1 1 I I I I I I I I � � 1 -I-J-1-I- -1'�1- --'1-1'-I-4- -I-4-LLLI I I I I I l t I t t I I I I I I I I I II I I I I I I1-T ,- -r-,- -� -r-r 1-r- 1-T-r 1 -,-1-'�-,- -r -'�-r-,-1- -,-1-,'-,- I'.. -1- -L-I- -L -+-L--+-1_J_+_ -+-1-'a_ _L.J_�'_1- -4.-L.J-4.-\4- -1-4- -1-4-L-I- 1-,--rr , , rrT-r�-T- � rr1- -r-i-r-r -r-r�-r- -,-�- -,-i-r-,- 30 = I I I I _I I I I _i I I 1 1 1 1 I I I I 1 1 1 1 11 1 I 1 1 1 1 � -1--t-r-I r-t-T-r T r-t-r- �-r-r�- -i l-T-i -r-i-i-r---i-r --�- -I-1-r-,- -1-4-�-- -1--1-+-�'--+-I--4-+- "1-+-1-4- -1-4-+-1- -+-1- -+-- -t'-I 4- -1-4-L-I- I I I I 11 1 1 I l l t I I I I 1 1 1 1 I I I I 11 1 I I 1 1 -,-'f -I-4- -1- -F-I-+-F -+-F-I-+- i-+-F--I- -1-i-+-1- -+-1-i-+- -1-4---1-4 -1-4-I--I- 15 I I I I I I I I I I I I I I 1 1 I I I I 11 1 1 I I I I f i l l 1-4 1-1- -1 1-+-F -+- +-1-i-+--i-1--1-i- -I-i-F-I- I i l t 11 1 1 _ 1I I_ 1 tI11 I I I I I I -� 1-r' _ I I- I 1-- _1 i '-�-I-� -T-1 -I- -F-I- -F-I-t-F--t-H-I-t- -i-t-1--i- -F-i-+-F- -F-1-i-F--i-F-I-i- -I-i-t--1- 1 11 i I 1 1 1 1 1 I _ I i I 1 1 I_ 11 11 I t 1 I 1 I I I I I I I I I I I I I I I I I I I I 11 1 1 11 1 1 I I 1 1 0 0 15 30 45 60 75 90 105 120 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 50.3 psi SPECIMEN NO. 1 2 3 4 120 INITIAL r1-11 T T r r I-11-1 T r r r Moisture Content-96 i 17.31 i 1 rril TTrr-1-1-1-1" Trrr , r1"1 ?Trr I'I1l Trrr 1 1 I 100 Dry Density-pcf 1 111.31 I 1 V__ 11 T T r r I-I,-1 T r r r Diameter-inches I 1.961 I 1 CL I� TTrr -1-1Trrr try 80 1 T T r r I-11-1 Trrr Height-inches ; 3.94I ; ; CO T-1111- TTrr rm1 TrrrATTEST -11 TTrr rl1'1 Trrr 60 -11 T T r r 1Y117 T r r r Final Moisture-% 1 17.3' ca 1-I� T t r r I-I -1 t r r r Dry Density-pcf I 111.3; rely Ttrr I-ly7 ttrr t 1 1 Q 40 r1-Iy t t r r I-t-I r r r r Calculated Diameter On.) I 1.961> rl-I T T r r T r t'-'r- Height-inches i 3.941 0 -1 Y t r r I-1-I ti t t r r r1-Iy t t r r 1-1-1-t t r r r Effect.Cell Pressure-psi 1 6.01 20 Failure Stress-psi ; 100.671 -I-I-I t t r r I-I-11 t t r r Total Pore Pressure-p si ' 6.01, 11 1 rt-t-1 Y t r r I-I-1-I T r r r I I i 0 Strain Rate-Inchestmin. 1 0.040001 1 1 0 5 10 15 20 Failure Strain-% I 3.31 1 1 AXIAL STRAIN-96 I3,Failure-psi 106.671 63 Failure-psi ; 6.00,1 TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: UU Triaxial-UU-5 PROJECT:Trinity River Siphon SAMPLE TYPE:Shelby Tube LOCATION:Fort Woth,TX DESCRIPTION:FAT CLAY(CH),dark grayish brown PROJECT NO:CDM02007 SAMPLE LOCATION:B-1,7-9ft CLIENT.CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATE:4/24/03 LL:48 PL:14 PI:34 Percent-200:89 GREGORYGEOTECHNICAL PLATE: B-UU.2 REMARKS:Tested at natural moisture. UU-02007-B-1,7-9.)ds PROJECT NO:CDM02007 PROJECT:TrInfty River Siphon CLIENT:CDM SPECIMEN NO.I DESCRIPTION:FAT CLAY(CH),dark grayish brown Cell Pressure 6.0 psi Back Pressure: 0.0 psi Eff.Stress: 6.0 psi DIa. 1.96 In Area: 3.014 in? Ht. 3.94 In Weight: 407.1 g No. Def. Load U AU Load 6 6% Corr. Acr CF3 al' cr,':Cr3 I P1 q (in) Dial (PSI) (psi) Obs) (in/in) Area (PSO (psi) (psi) (ps) (PSD X* (in) 0.0000 3.00 0.00 0.00 0.00 0.0 0.0 3.014 0.00 6.00 6.00 1.000 6.00 0.00 2 0.0100 57,00 0.00 0.00 54.00 0.003 0.25 3.022 17.87 6.00 23.87 3.978 14.94 8.94 3 0.0200 119.00 0.00 0.00 116.00 0.005 0.51 3.029 38.29 6.00 44.29 7.382 25.15 19.15 4 omoo 168.00 0.00 0.00 165.00 0.008 0.76 3.037 54.33 6.00 60.33 10.054 33.16 27.16 5 0.0400 205.00 0.00 0.00 202.00 0.010 1.01 3.045 66.34 6.00 72.34 12.056 39.17 33.17 6 usoo 235.00 0.00 0.00 232.00 0.013 1.27 3.053 76.00 6.00 82.00 13.666 44.00 38.00 7 0.0600 257.00 0.00 0.00 254.00 0.015 1.52 3.061 82.99 6.00 88.99 14.831 47.49 41.49 8 0.0700 273.00 0.00 0.00 270.00 0.018 1.78 3.069 87.99 6.00 93.99 15.665 49.99 43.99 9 0.0800 287.00 0.00 0.00 284.00 0.020 2.03 3.077 92.31 6.00 98.31 16.385 52.16 46.16 10 0.0900 299.00 0.00 0.00 296.00 0.023 2.28 3.085 95.96 6.00 101.96 16.994 53.98 47.98 11 0.1000 307.00 0.00 0.00 304.00 0.025 2.54 3.093 98.30 6.00 104.30 17.383 55.15 49.15 12 0.1100 314.00 0.00 0.00 311.00 0.028 2.79 3.101 100.30 6.00 106.30 17.717 56.15 50.15 13 0.1200 320.00 0,00 0.00 317.00 0.030 3.04 3.109 101.97 6.00 107.97 17.995 56.99 50.99 14 0.1300 323.00 0.00 0.00 320.00 0.033 3.30 3.117 102.67 6.00 108.67 18.111 57.33 51.33 15 0.1400 323.00 0.00 0.00 320.00 0.036 3.55 3.125 102.40 6.00 108.40 18.066 57.20 51.20 16 0.1500 316.00 0,00 0.00 313.00 0.038 3.80 3.133 99.89 6.00 105.89 17.649 55.95 49.95 17 0.1600 311.00 0.00 0.00 308.00 0.041 4.06 3.142 98.04 6.00 104.04 17.340 55,02 49.02 18 0.1700 306.00 0.00 0.00 303.00 0.043 4.31 3.150 96.19 6.00 102.19 17.032 54.10 48.10 19 0.1800 300.00 0.00 0.00 297.00 0.046 4.57 3.158 94.04 6.00 100.04 16.673 53.02 47.02 20 0.1900 291.00 0.00 0.00 288.00 0.048 4.82 3.167 90.95 6.00 96.95 16.158 51.47 45.47 21 0.2000 282.00 0.00 0.00 279.00 0.051 5.07 3.175 87.87 6.00 93.87 15.645 49.93 43.93 GREGORY GEO TECHNICAL UU-02007-13-1,7-9.)ds PLATE:B-UU.2a TRIAXIAL SHEAR TEST REPORT 75 11 1 1 I I I I I I I I 1 1 1 -r 1 I 1 I I 1 1 11 1 1 1 1 1 1 1-T-r4- -II-1-T-1I- -r'1-1-r--1-r'1-1- -I-1 -1- I I I I I I I I I I I I I I I I I t l l I I 1 1 1 1 1 1 I I I I -r-I- 1-r--1'r-,-'1- 't' 60 I I 1 1 I I l I I I I I t l l I I I I I t l I I I -,-T_r-r- -r-r-IT-Ir--Tt -ir1l-T- -1-r-r-1- -r1-r-1- -r-,-'1-r--�-r-,-4 -1-T-'r-I- -1-J_L_I_ 1 -,-7-r-,- -r-,-T-r--7-f 1-T- - I 1- i -r 'r'j 1-r-- I-r-,- 1- -1-7-r-,- 55 (L J_1_L_I_ _LJ-1_L -+-L 45 1 1 1 1 I I I I I I I I I I I I I I I I I I I I 1 1 I I I I C0 ---1-4 -1-J- -1-J-L-1- UJ ' - -I - -I I I I-rLI --I11---JII-- --I�t-?JI--IrL--I -I-T-r-I- r-1- 1 - r-i-r- i -_4-L-t- -t- { t- -I-4-1-1- -1-t-J-4..- It- - I I I I I I I I I I I I I I I I I I I 1 1 I I I I -,- -r-r- II1Q1 30 , I I I I I I I I I I I I I I I I I I I I I 1 1 I I I I I I I I -1-1-r-1 -r-I-T-r--T-r.-T- �-r-r�- -rI-r-C -r-r I-r--1-r-I- - -i 1-r-i -+-1- - -1-"1-+-t- -+-I-'a-+- 4-+-1-4- -t-4-}-1- -}-1-4-+---t-}-1-4 -t-4-t"-t- 1 -I-T-r-1- T-r -I-i- -I- -F-1-+-H -+-H-1-+- -4-+-1-�- -1- -+-1- -+-1- -+--a-I--I-1- -I- -H-1- 15 ' I I I I I I I I I I I I I I I I I I I I I I I I 1 1 I I I I I I I I I I I I I I 1 1 11 1 1 I I 1 1 I I I I I I I I I I I I 1-; 1--1- -1- -+-1---+-1--1-+- -+-F'�- -t-�-f-t- -+-1-A-+-- -�-1-�- t- -t'-t- I I I 1 _L I_ _L__1_I j_ I _ 1_ _I_j_ _1_ -I- ++ L _1 II -FII+ 11_-1,-_-II_ 1 - I I 0 0 15 30 45 60 75 90 105 120 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS J$, = 0.0 deg C = 51.5 psi SPECIMEN NO. 1 2 3 4 120 INITIAL r1-11 T T r r 1-111 T T r r Moisture Content-% i 12.7i rill TTrr r111 rrrr , , r1'I "TTrr 1-111 Trrr 1 1 100 Dry Density-pcf 1 109.91 I 1 r 1 11 TTrr t-11 Trrr Diameter-inches I 1.991 I I (L r1 11 "TTrr -111 TTrr i 1 i i 80 r 11 TTrr 1-1-1-1Trrr Height-inches I 4.001, 1 i w r-11I . Trrr rI11 Trrr ATTEST I-I1 'TTrr r111 Trrr 60 1-1-1- TTrr r111 T t r r Final Moisture-% 12.71 1-1 1 t t r r I-11 ti t t r r r Dry Density-pcf 109.91 r11 ttrr rl-1ti trI-r 1 1 r r Calculated Diameter(In.) 1 1.99' Q 40 1 i i i wI I ti t t r r I-I 7 t t r r r Height-inches i 4.001 W 1-I-i t t r r I-1-1-I t r r r t. .-1 t t t r 1-1-1-1 t t r r Effect.Cell Pressure-psi 6.0: 20 rrlti t t r r I-I-I-I t r r r Failure Stress-psi 1 trrr P 102.991 r I-I t t r r 1-1 1-I t r r r Total Pore Pressure-psi 1 6.01 r1-Iti ttrr I-I-iti 0 Strain Rate-Inches/min. 1 0.030001 1 i 0 5 10 15 20 Failure Strain-% 4.3 AXIAL STRAIN-% cr,Failure-psi 108.991 a,Failure-psi 6.00; TEST DESCRIPTION PROJECT INFORMATION = TYPE OF TEST&NO: UU Triaxial-UU-4 PROJECT:Trinity River Siphon SAMPLE TYPE:CME TUBE LOCATION:Fort Worth,TX DESCRIPTION:SANDY FAT CLAY(CH), brown and tan PROJECT NO:CDMO2007 SAMPLE LOCATION:B-2,7-8 ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATE:4/24/2003 LL:32 PL:12 PI:20 Percent-200:78 GREGORYGEOTECHN/CAL PLATE: B-UU.3 REMARKS:Tested at natural moisture. UU-02007-13-2,7-8.xls PROJECT NO:CDM02007 PROJECT:Tdnfty River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:SANDY FAT CLAY(CH), brown and tan Cell Pressure: 6.0 psi Back Pressure: 0.0 psi Eff.Stress: 6.0 psl Dia. : 1.99 in Area: 3.114 162 Ht. : 4.00 in Weight.,- 405.1 g Ao. Def. Load U AU Load e s% Corr. A6 63 I 6i' vl':63 I p' q (in) Dial (psi) (psi) pbs) Qn in) Area (psi) (psi) (psi) (psi) (psi) am M) 1 0.0000 1.00 0.00 0.00 0.00 0.0 0.0 3.114 0.00 6.00 6.00 1.000 6.00 0.00 2 0.0100 16.00 0.00 0.00 15.00 0.002 0.25 3.122 4.80 6.00 10.80 1.801 8.40 2.40 3 0.0200 40.00 0.00 0.00 39.00 0.005 0.50 3.130 12.46 6.00 18.46 3.077 12.23 6.23 4 0.0300 73.00 0.00 0.00 72.00 0.007 0.75 3.138 22.94 6.00 28.94 4.824 17.47 11.47 5 0.0400 112.00 0.00 0.00 111.00 0.010 1.00 3.146 35.28 6.00 41.28 6.881 23.64 17.64 6 0.0500 149.00 0.00 0.00 148.00 0.012 1.25 3.154 46.93 6.00 52.93 8.821 29.46 23.46 7 0.0600 184.00 0.00 0.00 183.00 0.015 1.50 3.162 57.88 6.00 63.88 10.646 34.94 28.94 8 0.0700 217.00 0.00 0.00 216.00 0.017 1.75 3.170 68.14 6.00 74.14 12.357 40.07 34.07 9 0.0800 245.00 0.00 0.00 244.00 0.020 2.00 3.178 76.78 6.00 82.78 13.796 44.39 38.39 10 0.0900 268.00 0.00 0.00 267.00 0.022 2.25 3.186 83.80 6.00 89.80 14.967 47.90 41.90 11 0.1000 287.00 0.00 0.00 286.00 0.025 2.50 3.194 89.54 6.00 95.54 15.923 50.77 44.77 12 0.1100 303.00 0.00 0.00 302.00 0.027 2.75 3.202 94.30 6.00 100.30 16.717 53.15 47.15 13 0.1200 312.00 0.00 0.00 311.00 0.030 3.00 3.211 96.86 6.00 102.86 17.144 54.43 48.43 14 0.1300 321.00 0.00 0.00 320.00 0.032 3.25 3.219 99.41 6.00 105.41 17.568 55.70 49.70 15 0.1400 327.00 0.00 0.00 326.00 0.035 3.50 3.227 101.01 6.00 107.01 17.835 56.51 50.51 16 0.1500 331.00 0.00 0.00 330.00 0.037 3.75 3.236 101.99 6.00 107.99 17.998 56.99 50.99 17 0.1600 335.00 0.00 0.00 334.00 0.040 4.00 3.244 102.95 6.00 108.95 18.159 57.48 51.48 18 0.1700 336.00 0.00 0.00 335.00 0.042 4.25 3.253 102.99 6.00 108.99 18.166 57.50 51.50 19 0.1800 336.00 0.00 0.00 335.00 0.045 4.50 3.261 102.73 6.00 108.73 18.121 57.36 51.36 20 0.1900 333.00 0.00 0.00 332.00 0.047 4.75 3.270 101.54 6.00 107.54 17.923 56.77 50.77 21 0.2000 332.00 0.00 0.00 331.00 0.050 5.00 3.278 100.97 6.00 106.97 17.828 56.48 50.48 22 0.2100 331.00 0.00 0.00 330.00 0.052 5.25 3.287 100.40 6.00 106.40 17.733 56.20 50.20 23 0.2200 331.00 0.00 0.00 330.00 0.055 5.50 3.296 100.13 6.00 106.13 17.689 56.07 50.07 24 0.2300 329.00 0.00 0.00 328.00 0.057 5.75 3.304 99.26 6.00 105.26 17.544 55.63 49.63 25 0.2400 324.00 0.00 0.00 323.00 0.060 6.00 3.313 97.49 6.00 103.49 17.248 54.75 48.75 26 0.2500 321.00 0.00 0.00 320.00 0.062 6.25 3.322 96.33 6.00 102.33 17.055 54.16 48.16 GREGORYGEOTECHNICAL UU-02007-B-2,7-8.xis PLATE:B-UU.3a TRIAXIAL SHEAR TEST REPORT 75 1-J_ _LJ_L-1- _L_I_J_L__J_L_I_J_ _I_J_L_1_ 11 1 1 I I 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 I I I I -r-I-T-r -T-r-1-T' 1-T-17-1- 'r-1-T-r -r'1'l'r'-1'r-t'Z- '{-i-r-I- J_1_L-I_ L_ J_1_LJ- _L J_L_I- _L_I_J_L_..J_L_I-J_ _I_J_L-1_ I I I I I I I I I I I I I I I I 11 1 I -1 I I I I I I I I l l "I'T-r-I- -r-I-T-r--T-r-I-T- -1-r-r1- -rl-r-,- -r-,-l-r--1-r-,- iZ- -,-1-r-1- 60 I I 1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I -1-7'r-I- -r-I-T-r-_T-r-I-T- -I-T-r-I -r1-r-I- -r-,-l-r--1-r-,--7 -,- -r-,- J_1-LJ- I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ,-r--n-r-,-�- -,-�-r-,- a. J_1-L-.1- _L-d_1_L _1_L..1-+- J-L_LJ- _LJ_L_L -L_LJ-L-_.J-L_I_1- _1-1-I--I- 45 I I I I 1 1 1 1 1 1 1 1 I I I I I I I I 1 1 1 1 I I I I I I I I rn ' Cl) -1-; 1--1-- 4- 1.-t-J- -1- -.1. -1.-1 1-L-- 1-F-1- 1- -1- +-1--1- IJJ 1 1 1 1 1 1 1 1 I I I I 11 1 1 1 1 1 1 I l t l 11 1 1 1 1 1 1 � -i-T-r-1- -r-1-T-r -T-r i-T` i-T`i-1- -r-1`r-r -r-r-I-r--n-r-i n- -I-i-r -� -1-4-1--1- -1--1-4.-4.__+_I-�..1_ -1-'1-F-1- IL --- 1 1 1 I I I I - ,-T`r-I- -r-1`T`i - i i`r` i`r`i l -i 1-T-i `r_i l`I 1-r`i 1-- 1-Ir 30 = -,11 1 1 I I I ' I I I I I I I 11 f l 1 I 1 1 I I I I I I t 1 Cl) -T-�--,- -�--,- -r -T-r�-T- i-r-r�- -;;- -,- -r-,-�-r--�-r-,-;- -,-1-r-,- }-1-4-}---4-}-1-4- -1--+-�-1- I I I I I I I I 1 1 1 1 1 1 1 1 I I I I 1 1 1 1 1 1 1 1 1 1 t 1 i-T`i l 'r i-T-i -r-r 1-r---I-r 1- 'i 1`r'i' -1-+-1--1- 1-�-+-1---+-F�-+- -1-+-t--1- -t--1-}-t- }-1-�-i�--�-1--1-�- -1-�-H-1- 15 I I I I I I I I I I I I I I I I I I I I I l f l I I I I I I I I -1-4 J.--1- -1--4-+-I- -+-F-4-+- -1-+ -1- -4-}_I_ -4- -1_-4_ _1-4- -I_ -1 I- 1 _ 1_ 1 _I 1_ -1- 1-T-I- _I 1- I_ _I 1_I _I_ I I I I I I I I I I I I I I 1 1 I I I I I I I I I I I I I I I -1-+-1--I -F- -+-F- -+-F�-+- -1-+-I--i- -H-1-+-I- -}- -i-i --.1-I•-1--1- -1--4-F-I- 1 1 I I I I I 11 1 1 1 1 1 I_ ------- --------__ ------- I I I 11 1 1 I I I I I I I I I I I I t l l I t l l 0 0 15 30 45 60 75 90 105 120 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 34.9 psi SPECIMEN NO. 1 2 3 4 80 INITIAL IJ L L J LI L L11 !J 1 L J 1 L; III I11 IIII Moisture Content-% 1 15.6; 1 1 IIII I I 70 I J 1 L LI L UJ IJ I L J I L I Dry Density-pcf 112.2I a 60. I l ,i 1 1 1 1 Jill pill 1 1 1 1 Diameter-inches 1 2.031 i IJL JLLI 1LI1 IJILJILI i i i I U) 5U 1 1 1 1 IIII IIII IIII 1 1 1 1 Height-Inches , 4.48, , , W IJ LJLLI LU1 IJILJILI ATTEST I I I I 11 1 1 1 1 1 1 I I I I I I I I Final Moisture-% 1 15.6 1 1 � 11 L J 1 LI 1 U 1 U 1 L J 1 L I Dry Density-pcf 112.21 111 fill fill Jill I111 I f f I 0 30 Calculated Diameter(in.) 1 2.031 1 1 g iLJIL1 LU1 IJ1LJiLJ W �Q 11 1 fill 111 1 I I I I 1 1 1 1 Height-inches 1 4.48i 1 1 J 1 LIJ 1 L J 1 L I Effect.Cell Pressure-psi 12.01 1 1 10 I I I I I I I 1 1 1 1 f l l I I I I I Failure Stress-psi 69.821 1J 1 L!i Ldi;-11 IJ1!_11 LI Total Pore Pressure- sl 1 12.01I11Jill fill fill p i 1 0 Strain Rate-Inchestmin. 1 0.045001 1 1 0 5 10 15 20 25 Failure Strain-% 8.41 AXIAL STRAIN-% fJ,Failure-psi 1 81.8211 11 It 63 Failure-psi 11 12.00; TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: UU Triaxlal-UU-1 PROJECT:Trinity River Siphon SAMPLE TYPE:CME TUBE LOCATION:Fort Worth,TX DESCRIPTION:LEAN CLAY(CL),light brown PROJECT NO:CDM02007 SAMPLE LOCATION:B-2,17-18 ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATEA/24/2003 LL:31 PL:12 PI:19 Percent-200:88 GREGORYGEOTECHN/CAL PLATE: B-UU.4 REMARKS:Tested at natural moisture. UU-02007-13-2,17-18.x1s PROJECT NO:CDMO2007 PROJECT:Trinity River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:LEAN CLAY(CL),light brown Cell Pressure: 12.0 psi Back Pressure: 0.0 psi Eff.Stress: 12.0 psi Dia. : 2.03 in Area: 3.226 inz Ht. 4.48 In Weight: 492.1 g No. Def. Load U AU Load s s% Corr. Aa a3I at' Cris:a3I p' q (in) Dial (psi) (psi) pbs) on/in) Area (psq (psi) (psi) (psi) (psi) (in) = 1+ 0.0000 2.00 0.00 0.00 0.00 0.0 0.0 3.228 0.00 12.00 12.00 1.000 12.00 0.00 2 0.0200 13.00 0.00 0.00 11.00 0.004 0.45 3.240 3.39 12.00 15.39 1.283 13.70 1.70 3 0.0300 26.00 0.00 0.00 24.00 0,007 0.67 3.248 7.39 12.00 19.39 1.616 15.69 3.69 4 0.0400 47.00 0.00 0.00 45.00 0.009 0.89 3.255 13.82 12.00 25.82 2.152 18.91 6.91 5 0.0500 69.00 0.00 0.00 67.00 0.011 1.12 3.262 20.54 12.00 32.54 2.711 22.27 10.27 6 0.0600 85.00 0.00 0.00 83.00 0.013 1.34 3.270 25.38 12.00 37.38 3.115 24.69 12.69 7 0.0700 99.00 0.00 0.00 97.00 0.016 1.56 3.277 29.60 12.00 41.60 3.467 26.80 14.80 8 0.0800 112.00 0.00 0.00 110.00 0.018 1.79 3.285 33.49 12.00 45.49 3.791 28.74 16.74 9 0.0900 122.00 0.00 0.00 120.00 0.020 2.01 3.292 36.45 12.00 48.45 4.038 30.23 18.23 10 0.1000 133.00 0.00 0.00 131.00 0.022 2.23 3.300 39.70 12.00 51.70 4.309 31.85 19.85 11 0.1100 144.00 0.00 0.00 142.00 0.025 2.46 3.307 42.94 12.00 54.94 4.578 33.47 21.47 12 0.1200 153.00 0.00 0.00 151.00 0.027 2.68 3.315 45.55 12.00 57.55 4.796 34.78 22.78 13 0.1300 161.00 0.00 0.00 159.00 0.029 2.90 3.322 47.86 12.00 59.86 4.988 35.93 23.93 14 0.1400 168.00 0.00 0.00 166.00 0.031 3.13 3.330 49.85 12.00 61.85 5.154 36.93 24.93 15 0.1500 176.00 0.00 0.00 174.00 0.033 3.35 3.338 52.13 12.00 64.13 5.344 38.07 26.07 16 0.1600 182.00 0.00 0.00 180.00 0.036 3.57 3.345 53.81 12.00 65.81 5.484 38.90 26.90 17 0.1700 188.00 0.00 0.00 186.00 0.038 3.79 3.353 55.47 12.00 67.47 5.622 39.73 27.73 18 0.1800 193.00 0.00 0.00 191.00 0.040 4.02 3.361 56.83 12.00 68.83 5.736 40.41 28.41 19 0.1900 198.00 0.00 0.00 196.00 0.042 4.24 3.369 58.18 12.00 70.18 5.848 41.09 29.09 20 0.2000 203.00 0.00 0.00 201.00 0.045 4.46 3.377 59.53 12.00 71.53 5.961 41.76 29.76 21 0.2200 208.00 0.00 0.00 206.00 0.049 4.91 3.393 60.72 12.00 72.72 6.060 42.36 30.36 22 0.2400 215.00 0.00 0.00 213.00 0.054 5.36 3.409 62.49 12.00 74.49 6.208 43.25 31.25 23. 0.2600 221.00 0.00 0.00 219.00 0.058 5.80 3.425 63.95 12.00 75.95 6.329 43.97 31.97 24 0.2800 227.00 0.00 0.00 225.00 0.063 6.25 3.441 65.39 12.00 77.39 6.449 44.69 32.69 25 0.3000 231.00 0.00 0.00 229.00 0.067 6.70 3.457 66.23 12.00 78.23 6.519 45.12 33.12 26 0.3200 237.00 0.00 0.00 235.00 0.071 7.14 3.474 67.64 12.00 79.64 6.637 45.82 33.82 27 0.3400 241.00 0.00 0.00 239.00 0.076 7.59 3.491 68.46 12.00 80.46 6.705 46.23 34.23 28 0.3600 244.00 0.00 0.00 242.00 0.080 8.04 3.508 68.99 12.00 80.99 6.749 46.49 34.49 29 0.3800 246.00 0.00 0.00 244.00 0.085 8.48 3.525 69.22 12.00 81.22 6.768 46.61 34.61 30 0.4000 249.00 0.00 0.00 247.00 0.089 8.93 3.542 69.73 12.00 81.73 6.811 46.87 34.87 31 0.4200 252.00 0.41 0.41 250.00 0.094 9.38 3.560 70.23 11.59 81.82 7.060 46.71 35.12 32 0.4400 255.00 0.00 0.00 253.00 0.098 9.82 3.577 70.72 12.00 82.72 6.894 47.36 35.36 33 0.4700 257.00 0.00 0.00 255.00 0.105 10.49 3.604 70.75 12.00 82.75 6.896 47.38 35.38 34 0.4900 259.00 0.00 0.00 257.00 0.109 10.94 3.622 70.95 12.00 82.95 6.913 47.48 35.48 35 0.5300 262.00 0.00 0.00 260.00 0.118 11.83 3.659 71.06 12.00 83.06 6.922 47.53 35.53 36 0.5600 264.00 0.00 0.00 262.00 0.125 12.50 3.687 71.06 12.00 83.06 6.922 47.53 35.53 37 0.5900 267.00 0.00 0.00 265.00 0.132 13.17 3.715 71.33 12.00 83.33 6.944 47.66 35.66 38 0.6100 269.00 0.00 0.00 267.00 0.136 13.62 3.734 71.50 12.00 83.50 6.958 47.75 35.75 39 0.6300 270.00 0.00 0.00 268.00 0.141 14.06 3.754 71.39 12.00 83.39 6.950 47.70 35.70 40 0.6500 271.00 0.00 0.00 269.00 0.145 14.51 3.773 71.29 12.00 83.29 6.941 47.64 35.64 41 0.6700 273.00 0.00 0.00 271.00 0.150 14.96 3.793 71.44 12.00 83.44 6.954 47.72 35.72 42 0.6900 273.00 0.00 0.00 271.00 0.154 15.40 3.813 71.07 12.00 83.07 6.922 47.53 35.53 43 0.7000 274.00 0.00 0.00 272.00 0.158 15.63 3.823 71.14 12.00 83.14 6.929 47.57 35.57 44 0.7500 275.00 0.00 0.00 273.00 0.167 16.74 3.875 70.46 12.00 82.46 6.872 47.23 35.23 45 0.7900 276.00 0.00 0.00 274.00 0.176 17.63 3.917 69.96 12.00 81.96 6.830 46.98 34.98 46 0.8100 278.00 0.00 0.00 276.00 0.181 18.08 3.938 70.09 12.00 82.09 6.841 47.04 35.04 47 0.8400 280.00 0.00 0.00 278.00 0.188 18.75 3.970 70.02 12.00 82.02 6.835 47.01 35.01 48 0.8500 279.00 0.00 0.00 277.00 0.190 18.97 3.981 69.58 12.00 81.58 6.798 46.79 34.79 49 0.8700 280.00 0.00 0.00 278.00 0.194 19.42 4.003 69.44 12.00 81.44 6.787 46.72 34.72 50 0.8900 281.00 0.00 0.00 279.00 0.199 19.87 4.026 69.31 12.00 81.31 6.775 46.65 34.65 GREGORYGEOTECHNICAL UU-02007-13-2-17-18-As PLATE-R-UU_4a TRIAXIAL SHEAR TEST REPORT 50 _I_1_L_1_ _LJ_1_L__1_LJ_1_ _I_1_L_1_ _L_I_1-L--1-L_I_1_ _1_1_L_I_ _L_1_J_L_ 11 1 1 t l l ' I I I I I I I I I I I I 11 1 I I I I I 1 1 1 1 -,-�-r-1- -r-1-�-r--�-r-1-�- -,-�-r-,- -r-t-I-r--�-r I- r-r-1- -r-1--1-r- J-1-L J- _L_I_1_L__1_L_I_1- -I-1_L_I_ _L_I_1-L_-1_L_I_1_ _I_1_L_I_ _L_I_1_L_ 11 1 1 I I I I I I I I I I I I I I I I I I I I 11 1 1 I I I I -,-.TI Ir -r-1-41 Ir 4-r_1-1- -1-1-r-I- -r-1-I-r--1-r-,-�- -,--1-r-,- -r-,-4-r- 40 I I I I I I I I I I I I I I I I I I I I I f l l I I I I I I 1 1 -1-7-r-,- -,--1--r-r--'T-,--,-1- -,-4-r-,- -r-t--T-r--1-r-I-1- -,-"1-r-,- -r-I-I-r- -1-4-L-1- _L-1-J_L__1_L-I-1- -1- -L_1_1_L--J_L_I_4_ _I-1_L-I- -1.-1-4_1._ I I I I 11 1 1 11 1 1 I I I I I I I I I I I I I I I I I I I I � -,-T-r-,- -r-,-T-r--T-r-,-T- -,-1-r-,- -r-,-T-r--4-r-,-T- -,--T-r-,- -r-,-4-r- a -1-1_L_I- -L_I-1-L__1_L-1-1_ _I-1-L_I_ _L-I-1_L__4-L-1-4- -1- -L-I_J_L- 30 I I I I 1 1 1 1 I I 1 1 I I 1 1 1 1 1 1 I I I f I I I I I I r I C0 -1-;-1 -1-4 4-1---4-I--1-4- -1-4-6 4-1-4-6- w - '-;-I--I- -6-'-4-I---;-1--1-'1- -I- -�-I_ _�_I-1-L.'-a-1-- -1- -1-1-�-I- -4-I-'1-�- I I I I I I I I 1 1 1 1 I I I 11 1 1 11 1 1 1 1 1 I t 1 1 -1-1-r-I- -r-,-1-r--1- -,-1- -,-1-�-,- -r-,-1-r--1-r-,-7- -,-1-r-,- -r-,-7-r- 20 = 1 1 1 1 1 1 1 1 1 1 1 1- 1 1 1 1 I l t l 1 1 1 1 1 I I 1 1 1 1 -,-1-r-t- -r-t- -r-- i-'r i -,--r-r-,- -r-,-I-r---1-r-,-— -,- ,--,- -r-,-j-,-- -I-'1-I--I- -6-1-4-1---4- -1-;- -1-+-�-1- -6-1-4-I---4-I--1-4- -�-4- -1- -4-�-�-�'- I r 1 1 I r r r 1 1 1 1 11 1 ► I r 1 1 I I I I I I I I I I ► 1 -,-I-,--,- -r-,-T-r--i ,--,-T- -,-1-,--,- -r-,-j-r--1-r-,-j- -,-1-r - -r-,-i-,-- -1-4-F-I- -F-1-+-F-- -F-1-i- -1-+-F-I- -F-1-+-F--4-F-1-4- -1-�-1--1 -1--1--1-F- 1 0 I I I I I l l f 11 1 1 I I I I I I I I I I I I I I I I f l l l I I I I I I I I I I I I I I I I 11 1 1 I l f t I I I I I l l f -1-i-F-I- -F-1-+-F- 4 -F-1-4 -1-4- -1_ -F'-1-+-,_--4-F-1-4 -1-4-F-1- F-1-4-F- 1 I 1 1 1 1 1 1 I I 1_ 1_ 1_ 1-I 1 I 1 1 1 1 I I 1 I I __----- ------------ I I I I 1 1 1 1 I I I I I I I I 11 1 1 I l t l I I I I I I I- - -1-+-F--I- -F--1-+-F -4-1--1-i- -1-4-F-I- -I--1-4-F--+-I--1-+- -I--1-I--1- -1--1--1-1-- I I I I I I 1 1 I r l l I I I I t 1 1 1 1 1 1 t 11 1 1 I I I Q 0 10 20 30 40 50 60 70 80 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 26.5 psi SPECIMEN NO. 1 2 3 1 4 60 INITIAL J=L_=1=1=*':I::[:-]=L Moisture Content-% 1 17.01 J-L--4.-I- -1_4_ 1_L 1 1 I 1 i-i- -i- -t- i-h 1 1 1 1 50 Dry Density-pcf 1 108.31 I 1 a ]=L=_-�_ ='=1= ]_[ Diameter-inches 1 1.421 I 1 J_L _ _I_ _I-1- J_L I 1 1 1 -1-F Height-inches ; 3.171 w =__ =I='= '___-]_[ ATTEST 30 -4--1 -1-+- -1-F Final Moisture-% 17.0, Dry Density-pcf ; 108.31 J L__1_I_ J-L 1 1 1 1 20 -F--4--1- -1-+_ -1- Calculated Diameter(In.) � 1.42- w =_r==r_=1= =1=T= I=r Height-inches i 3.171 i 1 I i a_ Effect.Cell Pressure-psi 1 19.01 1 1 10 ,_r �-r Failure Stress-psi ; 53.02" J i Total Pore Pressure-psi 1 19.0i 1 1 0 Strain Rate-Inches/min. i 0,030001 i 0 6 12 18 24 i i Failure Strain-% 1 14.51 1 1 AXIAL STRAIN-% cr,Failure-psi i 72.021 cr3 Failure-psi ; 19.001 1 1 TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: UU Triaxiai-UU-11 PROJECT:Trinity River Siphon SAMPLE TYPE:CME TUBE LOCATION:Fort Worth,TX DESCRIPTION: LEAN CLAY(CL),dark brown PROJECT NO:CDMO2007 v SAMPLE LOCATION:B-2,27-28 ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATEA/24/2003 LL:35 PL:12 PI:23 Percent-200:74 GREGORYGEOTECHNICAL PLATE: B-UU.5 REMARKS:Tested at natural moisture. UU-02003-B-2,27-28.x1s PROJECT NO:CDM02007 PROJECT:Trinity River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION: LEAN CLAY(CL),dark brown Cell Pressure: 19.0 psi Back Pressure: 0.0 psi Eff.Stress: 19.0 psi Die. : 1.42 in Area: 1.580 In Ht. 3.17 In Weight: 166.5 g No. Def. Load U DU Load E E% Corr. Aa a3' all al':a3' p' q on) Dial (psi) (psi) (lbs) (in/in) Area (psi) (psi) (psi) (psi) (psi) 1 0.0000 6.00 0.00 0.00 0.00 0.0 0.0 1.580 0.00 19.00 19.00 1.000 19.00 0.00 2 0.0100 14.00 0.00 0.00 8.00 0.003 0.32 1.585 5.05 19.00 24.05 1.266 21.52 2.52 3 0.0200 22.00 0.00 0.00 16.00 0.006 0.63 1.590 10.06 19.00 29.06 1.530 24.03 5.03 4 0.0300 28.00 0.00 0.00 22.00 0.009 0.95 1.595 13.79 19.00 32.79 1.726 25.90 6.90 5 0.0400 31.00 0.00 0.00 25.00 0.013 1.26 1.600 15.62 19.00 34.62 1.822 26.81 7.81 6 0.0500 36.00 0.00 0.00 30.00 0.016 1.58 1.605 18.69 19.00 37.69 1.984 28.34 9.34 7 0.0600 40.00 0.00 0.00 34.00 0.019 1.89 1.610 21.11 19.00 40.11 2.111 29.56 10.56 8 0.0700 42.00 0.00 0.00 36.00 0.022 2.21 1.616 22.28 19.00 41.28 2.173 30.14 11.14 9 0.0800 45.00 0.00 0.00 39.00 0.025 2.53 1.621 24.06 19.00 43.06 2.266 31.03 12.03 10 0.0900 48.00 0.00 0.00 42.00 0.028 2.84 1.626 25.83 19.00 44.83 2.359 31.91 12.91 11 0.1000 51.00 0.00 0.00 45.00 0.032 3.16 1.631 27.58 19.00 46.58 2.452 32.79 13.79 12 0.1100 52.00 0.00 0.00 46.00 0.035 3.47 1.637 28.10 19.00 47.10 2.479 33.05 14.05 13 0.1200 55.00 0.00 0.00 49.00 0.038 3.79 1.642 29.84 19.00 48.84 2.570 33.92 14.92 14 0.1300 57.00 0.00 0.00 51.00 0.041 4.10 1.648 30.95 19.00 49.95 2.629 34.48 15.48 15 0.1400 60.00 0.00 0.00 54.00 0.044 4.42 1.653 32.67 19.00 51.67 2.719 35.33 16.33 16 0.1500 62.00 0.00 0.00 56.00 0.047 4.73 1.658 33.77 19.00 52.77 2.777 35.88 16.88 17 0.1600 64.00 0.00 0.00 58.00 0.051 5.05 1.664 34.86 19.00 53.86 2.835 36.43 17.43 18 0.1700 67.00 0.00 0.00 61.00 0.054 5.37 1.670 36.54 19.00 55.54 2.923 37.27 18.27 19 0.1800 69.00 0.00 0.00 63.00 0.057 5.68 1.675 37.61 19.00 56.61 2.979 37.80 18.80 .20 0.1900 71.00 0.00 0.00 65.00 0.060 6.00 1.681 38.67 19.00 57.67 3.035 38.34 19.34 21 0.2000 74.00 0.00 0.00 68.00 0.063 6.31 1.686 40.32 19.00 59.32 3.122 39.16 20.16 22 0.2100 75.00 0.00 0.00 69.00 0.066 6.63 1.692 40.78 19.00 59.78 3.146 39.39 20.39 23 0.2200 77.00 0.00 0.00 71.00 0.069 6.94 1.698 41.82 19.00 60.82 3.201 39.91 20.91 24 0.2300 79.00 0.00 0.00 73.00 0.073 7.26 1.704 42.85 19.00 61.85 3.255 40.42 21.42 25 0.2400 81.00 0.00 0.00 75.00 0.076 7.58 1.709 43.87 19.00 62.87 3.309 40.94 21.94 26 0.2500 83.00 0.00 0.00 77.00 0.079 7.89 1.715 44.89 19.00 63.89 3.363 41.44 22.44 27 0.2600 85.00 0.00 0.00 79.00 0.082 8.21 1.721 45.90 19.00 64.90 3.416 41.95 22.95 28 0.2700 86.00 0.00 0.00 80.00 0.085 8.52 1.727 46.32 19.00 65.32 3.438 42.16 23.16 29 0.2800 89.00 0.00 0.00 83.00 0.088 8.84 1.733 47.89 19.00 66.89 3.521 42.95 23.95 30 0.2900 90.00 0.00 0.00 84.00 0.092 9.15 1.739 48.30 19.00 67.30 3.542 43.15 24.15 31 0.3000 91.00 0.41 0.41 85.00 0.095 9.47 1.745 48.70 18.59 67.29 3.620 42.94 24.35 32 0.3100 92.00 0.00 0.00 86.00 0.098 9.78 1.751 49.11 19.00 68.11 3.585 43.55 24.55 33 0.3200 93.00 0.00 0.00 87.00 0.101 10.10 1.757 49.50 19.00 68.50 3.605 43.75 24.75 34 0.3300 95.00 0.00 0.00 89.00 0.104 10.42 1.764 50.46 19.00 69.46 3.656 44.23 25.23 35 0.3400 95.00 0.00 0.00 89.00 0.107 10.73 1.770 50.29 19.00 69.29 3.647 44.14 25.14 36 0.3500 96.00 0.00 0.00 90.00 0.110 11.05 1.776 50.67 19.00 69.67 3.667 44.34 25.34 37 0.3600 97.00 0.00 0.00 91.00 0.114 11.36 1.783 51.05 19.00 70.05 3.687 44.53 25.53 38 0.3700 98.00 0.00 0.00 92.00 0.117 11.68 1.789 51.43 19.00 70.43 3.707 44.71 25.71 39 0.3800 99.00 0.00 0.00 93.00 0.120 11.99 1.795 51.80 19.00 70.80 3.726 44.90 25.90 40 0.3900 100.00 0.00 0.00 94.00 0.123 12.31 1.802 52.17 19.00 71.17 3.746 45.09 26.09 41 0.4000 100.00 0.00 0.00 94.00 0.126 12.63 1.808 51.98 19.00 70.98 3.736 44.99 25.99 42 0.4100 101.00 0.00 0.00 95.00 0.129 12.94 1.815 52.35 19.00 71.35 3.755 45.17 26.17 43 0.4200 102.00 0.00 0.00 96.00 0.133 13.26 1.821 52.71 19.00 71.71 3.774 45.35 26.35 44 0.4300 102.00 0.00 0.00 96.00 0.136 13.57 1.828 52.51 19.00 71.51 3.764 45.26 26.26 45 0.4400 102.00 0.00 0.00 96.00 0.139 13.89 1.835 52.32 19.00 71.32 3.754 45.16 26.16 46 0.4500 103.00 0.00 0.00 97.00 0.142 14.20 1.842 52.67 19.00 71.67 3.772 45.34 26.34 47 0.4600 104.00 0.00 0.00 98.00 0.145 14.52 1.848 53.02 19.00 72.02 3.791 45.51 26.51 48 0.4700 104.00 0.00 0.00 98.00 0.148 14.83 1.855 52.83 19.00 71.83 3.780 45.41 26.41 49 0.4800 104.00 0.00 0.00 98.00 0.152 15.15 1.862 52.63 19.00 71.63 3.770 45.31 26.31 50 0.4900 105.00 0.00 0.00 99.00 0.155 15.47 1.869 52.97 19.00 71.97 3.788 45.48 26.48 GREGORYGEOTECHN/CAL UU-02003-13-2.27-28x1s PI ATF-RJ11l.ria TRIAXIAL SHEAR TEST REPORT 50 J_1_L_I_ _L_I_1_L__1_L_I_1_ _I_1_L_1_ _L_1_1_L__1_L_1_1_ _1_1_L_I- _L-I_1_L- 1 1 1 1 I l f t I l l t 1 1 1 1 I I 1 11 1 1 -I-T-r-I- -r-1-l-r--l-r-1-1- -1--1-r-I- -r-1-'1-r--1-r-1--1- -I-'1-1--t- -r-'I-'1-,-- J_1_L_I_ _L_I_1_L__1_I--I-1_ J-L_I_ _L-1_1_L__1_L_I_1_ _t-1-L_I_ _L_I_J_L- I 1 I 1 1 1 1 1 1 I 1 1 11 1 1 11 1 1 11 1 1 1 1 1 1 1 1 1 1 -I-�_r-1- -r-I-1-r--1-r-,-1- -,--1-r-I- -r-I-1-r--1-r. 1- -,-1-I.-,- -r-1-1-r- 40 1 1 I I 1 1 1 1 1 1 1 1 I I I I I I I I I I I I I I I I 11 1 1 J_4-I--I_ _L_I_1_L__1_LJ-1.. -:-.4-L_I_ -L-II-1-L--1-L_I_1_ -1-1-L-I- -L-I-1_L- I I I I I I I I I I I I I I I I I I I I I I 11 1 1 11 1 1 � - ,-T-r-,- -r-I-1-r--T-H-1.. _,-1_r-,- -r_,-1"r`-�-r-,-1- -,-1-r-,- 4-,-44- J-1_L-1_ _L-1-1_L_-4-L_I_1_ _I_1 30 I I I I I I I I I I I I I I I I I I I I I I I I 11 1 1 11 1 1 1I-1-I 1-I- -1 --41 1 - 4-I_- -I-4I-- -II- I--1- -41-1 - I I -1I- I I I I I I I I I +- -1- +-L-1- -L-1-- -1-- u ------ -- -- - -- ---- - ---- . F• -1-�-1--1- -L-1-'{-L-- - _I-4- -1-4-L- -1'-1_4- -1-4- -1-4-L-I- -L-1_4-1'- � jr - = ---11-1r-- Ir I-1-Ir-I- I I 1I Ir---IIT-trI -l1r-4l1- -I-Tl Irl -It- -r1I -1I-1 20 . T-r-r- - -r-,-�- --Z-r- I-r-,- -r-,-II--r1I�1 '- - - -I 4I-r,I --1,II -1II II II II 1II 1II 1II 1II II II I1 (1 II t-1-4- - 4-1 1-a^ -1-4-L-I- -L-lI-4tI-lI a- 1I 4I -1I-4I-LI -II- -FI -I1-aI- r--1----; - --1-- -r---f-- r-,- ---- -rIF -- -1-4-F4-I--1-4- -1- -F-I- - -1-4- --4 -1- -1-4-F-I- -H-1-a-- -- 1-4-1 10 - I I 11 1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I t I I I I I I I I -1-•4- -I- -F-1-4-1---4-1 -1-4- -1-4-F-1- -I--1-4-F--4- -1-4- -1-4-F-I- -I--1-4-F- 1 1 1 1 I 1 I I I 1 1 I I I I 1 1 1 1 1 1 1 ------- -------- -------- II`r`I `I t l 1 1-I I-�- 1 � 1 1` I I I I -1-4 F-1- -F-1-4-F--4-F-I-4- -I-4-F-I- -F-I-4-F--4-F 1-4- -1-4-F-I- -F-1--1-h- 1- 1 t 1- _1 I- 1-I 1 1 I- I-, 1 I 1 I I I I 1 1 1 I i_ I-I 1- I I I I ------I- ---------------- -------- I l 1 1 1 1 t l I 11 1 1 I I I I 0 0 10 20 30 40 50 60 70 80 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 25.5 psi , SPECIMEN NO. 1 2 3 4 60 INITIAL 4 J 4 LL1_I_ A.LL-4 LLLL LI.IJ Moisture Content-% i 14.21 1 1 Lt-I-I_ ..I 1 1 I_t-IJ , 50 r rl-I--1 i-1 ► ++r r I-I-1-1 Dry Density-pcf i 118.4i a LV-111 J 1 i LLLL '-'-'-' Diameter-inches 1 1.411 I 1 L _ J.44 11LL I_I-IJ i 1 i i 40 r - 14 ► ++FI- I-I-1-I Height-Inches 1 2.671, 1 1 w L_r,_J112 rrLr ,_,i_I ATTEST LI_I_JJ11 LLLL 1_IJJ 30 Ft-1 4 4 4 ++F 1- 1-I^I Final Moisture-% 14.21 _t_1_I_D111 IrLL I_I_ID Dry Density-pcf 118.4= LI_I JJ 11 1LLL I_I_IJ 1 1 I 1 g 20 1-►-1-1 -1 4 4 4 +1.1-I- 1-1-I-1 Calculated Diameter(In.) ; 1.41 ; It w rl_n_ 111 r r r L rrrl Height-Inches 1 2.671 1 1 0 LLI_I_JJ11 LLLL_I_UJ 1_I._I_I_.4 4 a 4 4.t_ � ,_,-1-, Effect.Cell Pressure-psi 5.01 10 r r1-1--� r r r r . Failure Stress-psi 51.03 LLI_I_J J 11 LLLL 1=,J Total Pore Pressure-psi 1 5.01 1 i I-LI_1_�aJ 1 1 LLI_ ,_I_I_, p 1 1 1 0 Strain Rate-Inches/min. 1 0.030001 1 1 0 5 10 15 20 1 1 1 1 Failure Strain-% 1 4.51 1 1 AXIAL STRAIN-% 6,Failure-psi ; 56.031 Q3 Failure-psi ; 5.001 i TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST NO: UU Trlaxial-UU-9 PROJECT:Trinity River Siphon SAMPLE TYPE:CME TUBE LOCATION:Fort Worth,TX DESCRIPTION:SANDY LEAN CLAY(CL),light brown PROJECT NO:CDMO2007 SAMPLE LOCATION:B-3,2-3 ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATEA/24/2003 LL:27 PL:9 13I:18 Percent-200:62 GREGORY GEOTECHNlCAL PLATE: B-UU.6 REMARKS:Tested at natural moisture.Classification tests at 3-4ft UU-02003-13-3,2-3.xls PROJECT NO:CDM02007 PROJECT:Trinity River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:SANDY LEAN CLAY(CL),light brown - Cell Pressure: 5.0 psi Back Pressure: 0.0 psi Eff.Stress: 6.0 psi Dia. : 1.41 In Area: 1.553 ir? Ht. : 2.67 In Weight: 147.3 g No. Def, Load U AU Load E 8% Corr. Aa a3' ai' a,':a3' p' q (in) Dial (PSI) (psi) (lbs) (iMn) Area (psg (PSI) (psi) (psq (psq t on) 1 0.0000 2.00 0.00 0.00 0.00 0.0 0.0 1.553 0.00 5.00 5.00 1.000 5.00 0.00 2 0.0100 28.00 0.00 0.00 26.00 0.004 0.37 1.559 16.68 5.00 21.68 4.335 13.34 8.34 3 0.0200 39.00 0.00 0.00 37.00 0.007 0.75 1.565 23.64 5.00 28.64 5.728 16.82 11.82 4 0.0300 47.00 0.00 0.00 45.00 0.011 1.12 1.571 28.64 5.00 33.64 6.729 19.32 14.32 5 0.0400 53.00 0.00 0.00 51.00 0.015 1.50 1.577 32.34 5.00 37.34 7.468 21.17 16.17 6 0.0500 59.00 0.00 0.00 57.00 0.019 1.87 1.583 36.01 5.00 41.01 8.202 23.00 18.00 7 0.0600 64.00 0.00 0.00 62.00 0.022 2.24 1.589 39.02 5.00 44.02 8.804 24.51 19.51 8 0.0700 69.00 0.00 0.00 67.00 0.026 2.62 1.595 42.00 5.00 47.00 9.401 26.00 21.00 9 0.0800 74.00 0.00 0.00 72.00 0.030 2.99 1.601 44.96 5.00 49.96 9.993 27.48 22.48 10 0.0900 77.00 0.00 0.00 75.00 0.034 3.37 1.607 46.66 5.00 51.66 10.331 28.33 23.33 - 11 0.1000 80.00 0.00 0.00 78.00 0.037 3.74 1.614 48.34 5.00 53.34 10.667 29.17 24.17 12 0.1100 84.00 0.00 0.00 82.00 0.041 4.12 1.620 50.62 5.00 55.62 11.123 30.31 25.31 13 0.1200 85.00 0.00 0.00 83.00 0.045 4.49 1.626 51.03 5.00 56.03 11.207 30.52 25.52 14 0.1300 83.00 0.00 0.00 81.00 0.049 4.86 1.633 49.61 5.00 54.61 10.922 29.80 24.80 15 0.1400 81.00 0.00 0.00 79.00 0.052 5.24 1.639 48.19 5.00 53.19 10.639 29.10 24.10 16 0.1500 78.00 0.00 0.00 76.00 0.056 5.61 1.646 46.18 5.00 51.18 10.236 28.09 23.09 17 0.1600 77.00 0.00 0.00 75.00 0.060 5.99 1.652 45.39 5.00 50.39 10.079 27.70 22.70 ssf GREGORY GEOTECHNICAL UU-02003-B-3.2-3.)ds PI ATV•R_I It i Re TRIAXIAL SHEAR TEST REPORT 25 J_1_L_t_ _L_I-1_L--1-LJ_1_ _1_1_LJ_ _L_I_1-L__1-L_1_1_ _I_1_L-1_ _L-i-1_L_ 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 11 1 1 I I 1 1 1 1 1 1 1 1 1 1 -I-I-r-1- -r-,-�-r--�-r-I-7- -,-�-r-I- -r-,-4-r--�-r-I-�- -1-�-r-1- -r-I-l-r- -1-1_L-I- _L-1-1_L__1-L_I_J_ _I_4_L-I- -L-1-J_L__J-L_I-1_ _I-4-L_I_ _L_I_J_L I I 1 1 1 1 1 1 I I 1 l l l I t l l I I I I 1 1 1 1 -I-7-r-1- -r-,-_T-r-- T-r-,- T- -,- T-r-I- -r-,- T-r--_T-r-,- T- -,-7-r-1- -r-I--1-r- 20 I I I I I I I I I I I I 1 1 1 1 I I I I I I I I I I I I I I I I _I_1_L-I- -L-I-J-L--1-L-1-J- -1-J-L-1_ _L_I-4-L__J-L-1-I4- .-1--1-L-II-I _L-I-J-L- I I I 11 1 I I I I I I I I I � -,-s-r-,- -r-,-�-r--1-r-,-1- -,-�-1 Ir-,- -r-,-1-r--�-r-,-1- -,-n-rI -,- -rI -,-1I-rI - 15 (0 -I'-1-4-�--4-1 - - -1- +-I -1- -1 -1-4-I -_4-I - 4- -1-4-1--1- -1 -1-4-1 - W I I I I I I I I I I I t I 1 1 I I I I 11 1 1 I I I I 11 1 I —,—T-r—,— —r—I-T—r-- r—,-1— —,—-r—r—I— —r—,-1—r--1—r—,—I —,-1—,--I- -r—,—i-r - F- 4-1--1-4- -1-4-L--I- -I--1-4-I---4-{--1_4- _ .a_1.._I_ -I__I_4_I-_ I I I I I I I I I I I I I I 1 1 I I I I I I I I 1 1 1 11 1 1 -,-7-r-,- -r-,-4- --i-r-,-7- -,--r-r-1- -r-,-4-r--7-r-,-�- -,-; -,- -r-,-�-`- 10 1_7 = I I I I /- 4 -II I I1 I1 I 1 1 11 I I I I I II II II II II I1 I I -- - --- - - --- - - - -- _ - - - - - - II -1II-4II- 1 1 r, r-- - - ?----i- T-- r ?-r--?-r -?- 1 - r-,- -r -1-4- - -1- -4- --I- 1--1-4- -4-H-1-4- -1-4-H-I- F-1-a- 5 �IFI - - - I 11 1 1 I I I I I I I I I I I I I I I I I I I I I 1 1 I I I I I I I I 1 1 1 1 I I I I I I I I I I I I 1 1 1 -1-4-I--I- I,-i-F--4-1--1-4- -1-i-F-I- -1--1-4-H--4-1- -4- -1-4-I--I- - -1-a-1-- I I I I I I I I I l i t i l l r r i l l_-1 I I I ! 1 1 1 i t l l -I-i-F-I- -F-I-i-F--f-H-I-i- -1-i-1--1- -F-I-i-F--i-F-1-i- -I-i-F-I- -F t-i- _ F- I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 11 1 1 0 0 5 10 15 20 25 30 35 40 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C= 15.9 psi SPECIMEN NO. 1 2 3 14 INITIAL 1-I-I a 4 4 1 L 1-I-I a Moisture Content-% I i 13.8 , 30 r Dry DensitY-P cf 113.21 - r r-�-t7-t rrrr rrl-1 a - 1_I 7 3 I i L L L LIJ J Diameter-Inches 1 1.401 1 1 25 FI-I 11 r r t t t-1- 1-111 1 I 1 I rn I-i=1= -I 14 +-a- 1--1-1-1-1 Height-inches 1 3.111 i rn rrl_ g 2 1 r r[r !rr-1 D AT 20FF_F_ -1Final Moisture-% 13.81 i -1J41 1L LL 1-1-1-1p 15JJY1 LrLr I_IJJ Dry Density-pcf I 113.2ICalculated Diameter(in.) 1.401 7 7 3 3 I I C C 1=1_IJ> 10 Height-inches I 3.1110033I Ir[r_I_I_I]1-I--1 a 4 4 a.a 1-L 1-,-1 Effect.Cell Pressure-psi 5.0� 5 r rl-I -I-1-1 4 rrrr r1-1 Failure Stress- I I 31.881 i i �-IJ 1 LL LL I_I_I.1 Ps 1 1 1 1 r r1-1- 7 7 t rrrr i-I�-1 Total Pore Pressure-psi 1 5.01 L LI_I_JJ 31 TILL I_IJ_I P I 1 1 , 0 Strain Rate-inches/min. I 0.030001 I I 0 5 10 15 20 Failure Strain-% i 3.51 I I AXIAL STRAIN-% a,Failure-psi 36.881 63 Failure-psi ; 5.001 TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST 81 NO: UU Triaxial-UU-10 PROJECT:Trinity River Siphon SAMPLE TYPE:CME TUBE LOCATION:Fort Worth,TX DESCRIPTION:SANDY LEAN CLAY(CL),light brown PROJECT NO:CDMO2007 SAMPLE LOCATION:B-3,3-0 ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATER/24/2003 LL:27 PL:9 PI:18 Percent-200:62 GREGORYGEOTECHNICAL PLATE: B-UU.7 REMARKS:Tested at natural moisture. UU-02003-13-3,3-4.x(s PROJECT NO:CDMO2007 PROJECT:Trinfty River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:SANDY LEAN CLAY(CL),light brown Cell Pressure: 5.0 psi Back Pressure: 0.0 psi Eff.Stress: 6.0 psi Die. : 1.40 In Area: 1.543 tn2 Ht. : 3.11 In Weight: 162.3 g No. Def. Load U DU Load 9 s% Corr. Acr a3� 6if all:a3 P' 9 (in) Dial (psi) (psi) (ibs) (in/in) Area (psl) (psl) (psi) (psi) (PSI) 4 _ ,. or?) 1 0.0000 5.00 0.00 0.00 0.00 0.0 0.0 1.543 0.00 5.00 5.00 1.000 5.00 0.00 2 0.0100 25.00 0.00 0.00 20.00 0.003 0.32 1.548 12.92 5.00 17.92 3.584 11.46 6.46 3 0.0200 35.00 0.00 0.00 30.00 0.006 0.64 1.553 19.32 5.00 24.32 4.863 14.66 9.66 _ 4 0.0300 40.00 0.00 0.00 35.00 0.010 0.96 1.558 22.46 5.00 27.46 5.493 16.23 11.23 5 0.0400 43.00 0.00 0.00 38.00 0.013 1.29 1.563 24.31 5.00 29.31 5.862 17.15 12.15 6 0.0500 46.00 0.00 0.00 41.00 0.016 1.61 1.568 26.14 5.00 31.14 6.229 18.07 13.07 7 0.0600 48.00 0.00 0.00 43.00 0.019 1.93 1.573 27.33 5.00 32.33 6.466 18.66 13.66 } 8 0.0700 51.00 0.00 0.00 46.00 0.023 2.25 1.579 29.14 5.00 34.14 6.828 19.57 14.57 9 0.0800 52.00 0.00 0.00 47.00 0.026 2.57 1.584 29.68 5.00 34.68 6.935 19.84 14.84 10 0.0900 53.00 0.00 0.00 48.00 0.029 2.89 1.589 30.21 5.00 35.21 7.041 20.10 15.10 11 0.1000 55.00 0.00 0.00 50.00 0.032 3.22 1.594 31.36 5.00 36.36 7.272 20.68 15.68 12 0.1100 56.00 0.00 0.00 51.00 0.035 3.64 1.600 31.88 5.00 36.88 7.376 20.94 15.94 13 0.1200 54.00 0.00 0.00 49.00 0.039 3.86 1.605 30.53 5.00 35.53 7.106 20.26 15.26 14 0.1300 51.00 0.00 0.00 46.00 0.042 4.18 1.610 28.56 5.00 33.56 6.713 19.28 14.28 15 0.1400 49.00 0.00 0.00 44.00 0.045 4.50 1.616 27.23 5.00 32.23 6.446 18.62 13.62 16 0.1500 47.00 0.00 0.00 42.00 0.048 4.82 1.621 25.91 5.00 30.91 6.181 17.95 12.95 GREGORY GEOTECHNICAL UU-02003-e-3.34 An 01 AT=-0_1 a 17. TRIAXIAL SHEAR TEST REPORT 25 LJ_1_L__1_L J_1_ _1_1-L_I_ _L-I- 1, 1_L__1_L_I_1_ 11 1 1 1 1 1 1 1 1 1 I I I I I I I I 1 1 1 1 I I I I I I I I -I-l-r-1- - -I-�-r--�-r-1-�- -1-�-r-1- -r-1-�-r--�-r-I-�- -I-�-r-1- -r-1-T-r- J_1_L_I_ _L_I_1-L__1_L_I_1- _I_1_L_I- _I--I-1-L-_1_L-I-1_ _I--1-I-_I_ _L-1-1_L_ I I I I I I I I 11 1 1 11 1 1 I I 1 1 I I I I I I I I I I I I Y 20 I-,-TI -Ir I -Ir I _J-Ir--1-Ir-I- 1I- -I-4-Ir I -rI I-1-rI --1I-rI I-1I- -I 4-rI I -rI -I -iI-rI - .t-I- -1- 4-I---1-1- _t- -I-1-L-I- -L-1-J-L- I I I I I I I I I I I I I I I I I I I I I I I I 11 1 I 1 1 1 1 + � -1-7-r-,- -r-,-.7-r--T-r-,-1- -,- T-r-,- -r-,-T-r---1-r-,-I- -,-I-r-,- -r-,-i-r- a -I-1-I--1- _I--1-d-J---1-L-1-4- -1-1_L-I- -L-1-1-L__.t-L-I-.t_ -I-_t-L_I- -L-1-J-L- 15 I I I I I I I I I I I I I I I I I I I I 11 1 1 I I I I I I I I -1-4-6-1- -6-1-4-I---4-L-1-1- -1-4-J--I- -J--1-4-L--1-6-1-4- -1-.4-L-I- -L-1-1-L- 11, I I I I I l l t I I I I I I I I 11 1 1 I I I I 11 1 1 I I I I Q. -,-1-r-,- -r-t-1-r--1-r-1-1- -,-4-r-,- -r-,-T-r--1-r-,- 1- -,-4-r-,- -r-,_1-r- -1-4-i--I- -1--1-4-L--4-I--1-.4 6-1-4-I---4-1-_I-4- -I-4-L-I- -I--1-a-I-- co 1I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 1 -,-1-r-,- -r-,- -r--1-r-,-1- -,-7-r-I- -r-,-1-r--1-r-,-�- -,-i-r-,- -r1 -,--11 10 r-,--I-r- C/3 -,-1-,--,- -,--,-1-r--1-r-,-1- -,-I-r-,- -,--,-1-r--1-r-,-1- -,-i-r-,- - _ -1-4_1- -4-4 1---4-I--1-4- -1-4- -I- -I--1-4-i---1-L-1-4- 1--,-4-L- 1 'r I'r- -I-;-1--1- -1-4- 4- _,_;- _,_4- 1-4-I'--4-I--1-4- -1-4-I'-I- -i--1-;-I-- 5 I I 1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I 1 1 1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I - -1-{_F--,- _F-,-;-F_ {-f_,_4- -,_4- {-I---{-I--1-4- -1-;-I--I- -I--I-4-I'- 1 1 1 1 _1 _I_ I _ ---_-- __-_- -----_ ---I--- _------- I I I I I I I I I I I I 11 1 1 I I I I 11 1 1 I I I I I I I I 4- 4;-F-1-'I- -1-4- -I- _F_,_ -1---4-1--1-4- -,-;-H-I- -i--1--1-I-- 1I _ I_1 1 I 1 I 1 I 1 I_ 1 1 I 1 I 1 I 1 I I I I 1 1 1 I I I I I I I I I I I I I I I I I I I I I I I I 0 5 10 15 20 25 30 35 40 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 7.1 psi SPECIMEN NO. 1 2 3 4 15 INITIAL 11 1 L L L I_I_I 1 till I Moisture Content-% 1 15.6i1 IIII III , , hl-I--IIII ttl-h-l-H-i 1 t 1 1 1 1 I 1 1 I I Jill till Dry Density-pcf 1 112.21 i i a 12 1 1 I I IIII 1 1 1 1 Diameter-Inches 1 2.031 1 1 LI_I JJ 11 LLLL 1_I_IJ 1 1 1 i ' I I I I I I I I I I I I I I I I Height-Inches 1 4.481 1 i rrl-1--111T rrrr rr1-t W9 I I I I 1 1 1 1 1 1 1 I I I I AT TEST 1 1 1 1 I I . . I . . I I I I I ► 1-1-I -I l ; 1-ti 1- r1-+-1 Final Moisture-% 15.6" co IIII IIII IIII IIII rrn �1-7-r rrrr r1-1-, Dry Density-pcf 112.21 O 6 I I I I till I I I I I I I I Calculated Diameter(in.) 1 2.031 Q rrrl -l7'IY rrrr rrl-1 1 1 t 1 > 1_1_I_I i i 11 11 i i 1_i_I i Height-Inches i 4.48i W I I I I 1 1 1 1 I I I I I I I I 1 a 3 Effect.Cell Pressure-psi 1 9.01 1 1 I I I I 1 1 1 1 I I t 1 1 1 I I Failure Stress-psi 1 14.25, rrrr���� rrrr rrn P 1 t 1 1 LLI-I-JJ11 LLLL I_I-IJ i i 1 , , , i , , , , , , , , I Total Pore Pressure-psi 1 9.01 0 Strain Rate-Inches/min. i 0.030001 1 1 0 5 10 15 20 i Failure Strain-% 1 4.21 1 1 AXIAL STRAIN-% a,Failure-psi ; 23.251 1 1 a3 Failure-psi 1 9.001 1 1 TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: UU Triaxial-UU-12 PROJECT.Trinity River Siphon SAMPLE TYPE:CME TUBE LOCATION:Fort Worth,TX DESCRIPTION:SANDY LEAN CLAY(CL),light to medium brown PROJECT NO:CDMO2007 SAMPLE LOCATION:B-3,12-13 ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATER/24/2003 LL:28 PL:13 PI:15 Percent-200:78 GREGORYGEOTECHN/CAL PLATE: B-UU.8 REMARKS:Tested at natural moisture. U U-02007-B-3,12-13.xls PROJECT NO:CDMO2007 PROJECT:TrinUy River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:SANDY LEAN CLAY(CL),light to medium brown Cell Pressure: 9.0 psi Back Pressure: 0.0 psi Eff.Stress: 9.0 psi Dia. : 2.03 in Area: 3.226 In Ht. : 4.48 in Weight: 492.1 g No. Def. Load U AU Load s s% Con'. Av v3 ai' vl':v3' p' q On) Dial (psi) (psi) pbs) (in/in) Area (Ps) (psi) (psi) (psi) (psi) ..v,�„;� ,,;:<�, h. ;..�x..,�..:..x (ink :... � K - 1 0.0000 3.00 0.00 0.00 0.00 0.0 0.0 3.226 0.00 9.00 9.00 1.000 9.00 0.00 2 0.0100 22.00 0.00 0.00 19.00 0.002 0.22 3.233 5.88 9.00 14.88 1.653 11.94 2.94 3 0.0200 31.00 0.00 0.00 28.00 0.004 0.45 3.240 8.64 9.00 17.64 1.960 13.32 4.32 4 0.0300 36.00 0.00 0.00 33.00 0.007 0.67 3.248 10.16 9.00 19.16 Z129 14.08 5.08 5 0.0400 41.00 0.00 0.00 38.00 0.009 0.89 3.255 11.67 9.00 20.67 2.297 14.84 5.84 6 0.0500 44.00 0.00 0.00 41.00 0.011 1.12 3.262 12.57 9.00 21.57 2.396 15.28 6.28 7 0.0600 46.00 0.00 0.00 43.00 0.013 1.34 3.270 13.15 9.00 22.15 2.461 15.58 6.58 8 0.0700 48.00 0.00 0.00 45.00 0.016 1.56 3.277 13.73 9.00 22.73 2.526 15.87 6.87 9 0.0800 49.00 0.00 0.00 46.00 0.018 1.79 3.285 14.00 9.00 23.00 2.556 16.00 7.00 10 0.0900 49.00 0.00 0.00 46.00 0.020 2.01 3.292 13.97 9.00 22.97 2.553 15.99 6.99 11 0.1000 51.00 0.00 0.00 48.00 0.022 2.23 3.300 14.55 9.00 23.55 2.616 16.27 7.27 12 0.1100 51.00 0.00 0.00 48.00 0.025 2.46 3.307 14.51 9.00 23.51 2.613 16.26 7.26 13 0.1200 50.00 0.00 0.00 47.00 0.027 2.68 3.315 14.18 9.00 23.18 2.575 16.09 7.09 14 0.1300 51.00 0.00 0.00 48.00 0.029 2.90 3.322 14.45 9.00 23.45 2.605 16.22 7.22 15 0.1400 51.00 0.00 0.00 48.00 0.031 3.13 3.330 14.41 9.00 23.41 2.602 16.21 7.21 16 0.1500 51.00 0.00 0.00 48.00 0.033 3.35 3.338 14.38 9.00 23.38 2.598 16.19 7.19 17 0.1600 51.00 0.00 0.00 48.00 0.036 3.57 3.345 14.35 9.00 23.35 2.594 16.17 7.17 18 0.1700 51.00 0.00 0.00 48.00 0.038 3.79 3.353 14.31 9.00 23.31 2.591 16.16 7.16 19 0.1800 51.00 0.00 0.00 48.00 0.040 4.02 3.361 14.28 9.00 23.28 2.587 16.14 7.14 _ 20 0.1900 51.00 0.00 0.00 48.00 0.042 4.24 3.369 14.25 9.00 23.25 2.583 16.12 7.12 j 21 0.2000 51.00 0.00 0.00 48.00 0.045 4.46 3.377 14.22 9.00 23.22 2.579 16.11 7.11 22 0.2100 51.00 0.00 0.00 48.00 0.047 4.69 3.385 14.18 9.00 23.18 2.576 16.09 7.09 23 0.2200 51.00 0.00 0.00 48.00 0.049 4.91 3.393 14.15 9.00 23.15 2.572 16.07 7.07 24 0.2300 51.00 0.00 0.00 48.00 0.051 5.13 3.401 14.12 9.00 23.12 2.568 16.06 7.06 25 0.2400 52.00 0.00 0.00 49.00 0.054 5.36 3.409 14.38 9.00 23.38 Z597 16.19 7.19 26 0.2500 51.00 0.00 0.00 48.00 0.056 5.58 3.417 14.05 9.00 23.05 2.561 16.02 7.02 27 0.2600 51.00 0.00 0.00 48.00 0.058 5.80 3.425 14.02 9.00 23.02 2.557 16.01 7.01 28 0.2700 51.00 0.00 0.00 48.00 0.060 6.03 3.433 13.98 9.00 22.98 2.554 15.99 6.99 29 0.2800 51.00 0.00 0.00 48.00 0.063 6.25 3.441 13.95 9.00 22.95 2.550 15.97 6.97 30 0.2900 51.00 0.00 0.00 48.00 0.065 6.47 3.449 13.92 9.00 22.92 2.546 15.96 6.96 31 0.3000 51.00 0.41 0.41 48.00 0.067 6.70 3.457 13.88 8.59 22.47 2.616 15.53 6.94 32 0.3100 51.00 0.00 0.00 48.00 0.069 6.92 3.466 13.85 9.00 22.85 2.539 15.92 6.92 w 33 0.3200 51.00 0.00 0.00 48.00 0.071 7.14 3.474 13.82 9.00 22.82 2.535 15.91 6.91 34 0.3200 52.00 0.00 0.00 49.00 0.071 7.14 3.474 14.10 9.00 23.10 2.567 16.05 7.05 35 0.3300 52.00 0.00 0.00 49.00 0.074 7.37 3.482 14.07 9.00 23.07 2.563 16.04 7.04 36 0.3400 51.00 0.00 0.00 48.00 0.076 7.59 3.491 13.75 9.00 22.75 2.528 15.88 6.88 37 0.3500 51.00 0.00 0.00 48.00 0.078 7.81 3.499 13.72 9.00 22.72 2.524 15.86 6.86 38 0.3600 51.00 0.00 0.00 48.00 0.080 8.04 3.508 13.68 9.00 22.68 2.520 15.84 6.84 39 0.3700 51.00 0.00 0.00 48.00 0.083 8.26 3.516 13.65 9.00 22.65 2.517 15.83 6.83 40 0.3800 51.00 0.00 0.00 48.00 0.085 8.48 3.525 13.62 9.00 22.62 2.513 15.81 6.81 41 0.3900 51.00 0.00 0.00 48.00 0.087 8.71 3.534 13.58 9.00 22.58 2.509 15.79 6.79 42 0.4000 51.00 0.00 0.00 48.00 0.089 8.93 3.542 13.55 9.00 22.55 2.506 15.78 6.78 43 0.4100 51.00 0.00 0.00 48.00 0.092 9.15 3.551 13.52 9.00 22.52 2.502 15.76 6.76 44 0.4200 51.00 0.00 0.00 48.00 0.094 9.38 3.560 13.48 9.00 22.48 2.498 15.74 6.74 45 0.4300 51.00 0.00 0.00 48.00 0.096 9.60 3.568 13.45 9.00 22.45 2.495 15.73 6.73 46 0.4400 51.00 0.00 0.00 48.00 0.098 9.82 3.577 13.42 9.00 22.42 2.491 15.71 6.71 47 0.4500 51.00 0.00 0.00 48.00 0.100 10.04 3.586 13.38 9.00 22.38 2.487 15.69 6.69 48 0.4600 51.00 0.00 0.00 48.00 0.103 10.27 3.595 13.35 9.00 22.35 2.484 15.68 6.68 GREGORY GEOTECHNICAL i n j..mnm_R_1 19_11 via M AT=-R_I 111 A. TRIAXIAL SHEAR TEST REPORT 25 -1-1_L-1- _L_I_1_L__1_L_I_J_ -I-J-L_1_ _L_I_I-L_ 1 1 1 1 1 1 1 1 1 1 1 1 I I I I 1, I I I 1 1 1 1 1 1 1 1 1 1 1 1 -I-�-r-I- -r-,-1-r--1-r-,-1- -I-11-r-1- - -,-1-r--1-r-,-1- -I-1-r-1- -r-,-1-r- -I-1-L-1- -L_I-1_L__1_L-I-1_ -1-1_L-1_ _L_i_1_L__1-L-1-1- -1-1_L_I_ _L_1_-1 L_ 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 20 I I I I I I I I I I 1 1 I I I I 1 1 1 1 I I I I 1 1 1 1 I I I I _L_1-J-L--J-L_I-�- -I--{-L-I- _L-1-�_L_ I I I I 1 1 1 1 I I I I I I I I I I I I 11 1 1 I I I I 11 1 1 a _I_a_L_I_ .4-I--1- -L_I_.L-L--J_L_I_-1 _I--!_I--1- -1- -1 L_ 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 LU I I I I 11 1 1 1 1 1 1 1 1 1 1 I I 1 1 1 1 1 1 1 I I I I -,- -r-,- -r-,-7-r-- T r-,- I -,-1-r-,- , -,-7-r-- -r-,-7- --r-,- -r-,-1-r- -1-4-1- -1--1-4-L--4-L-1-4- -1--1-1- - -1--1-4-L--4-I--1-4- -1-'/- -i- -�-1-4-6- I 11 1 1 1 1 1 1 1 1 1 1 1 I 11 1 1 I I I I 1 1 1 11 1 1 10 = 11 1 1 I I 1 1 1 1 1 1 I I I I 11 1 1 1 1 1 1 I I I I I I I -,- -r-,- -r-,-;-,---1-r-,-1- - ,--i-r-,- -r-,-i-r--i-r-,- -,--i-,--,- -r - -r- 5 -',I --1- 1- 1- -4 46-1- II II II II 4II-6II --41I-I--: --1-41I- -1I-41I-�I -I1I- - II -- -i-r r- ---1- --T- --ir-- ---- r-T --+- -I- -F--1-+-F---4-I- -1-+-I--I- F--1-+-F---i-F-1-4- -1-+-I--I- -1-- 1-- I I I 'I I I I I I I I I I I I I I I I I I I I I I I I I I I I I - I-+-I-I- -I--1-+-F--+-F 1-+- -1-+-F-I- -1-1-+-F--+-F-i-+- -1-+-F-I- -1--1-4- I __ I- I 1 1 i� 1 I I I I I 1 I -I-+-F-1- -F-I-+-F--+- -1-+- -I--1-1--1- -F-1-+-F--4-F-1--4- -I-4-I— -f-I-+-F I I I I I I I I 1 11 t I I t 1 i 1 t 1 I 1 1 1 1 1 I 11 I 1 I I I I I I I I I 1 1 I I I I 11 1 1 11 1 1 I I I I 11 1 I 0 0 5 10 15 20 25 30 35 40 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg___F C = 13.9 psi SPECIMEN NO. 1 1 2 3 4 40 INITIAL r CCI=1 1-1- 11 1 r r r r 1-li i Moisture Content-% I 20.1 J733IICC CI=1=1 35 I-F I-I -i 1 i+ t r t 1- I-li i Dry Density-pcf i 100.71 i i a 30 LLI=1 J J 31 i i C C 1=1J Diametezlr� r-inches i 1.971 FI-1-1--i-1++ 1-1-1-1 i i co25 LI=1= I:C C 1_IJJ Height-inches , 4.931, u, - _1_ AT TEST I-H -i-i++ i-1-F F 1-1-1-I 20 C _I=0 7 3 3 I L CC 1=1J=1 Final Moisture-% 20.11 i Dry Density-pcf ; 100.71 ; i C1=1=»si r=CC 1=1=1D I , 15 Calculated Diameter(in.) ; 1.971 1 ; Q N1-1-=1 a 4 4-1-F F 1=1:1-4 I 1 1 0 10 C C1-1-:1 7 3 i t C C C IZO Height-Inches 4.931 ; I -�_1_I__,4 4 4-4--1-1- 1-1-4=1 Effect.Cell Pressure-psi 12.01 1 11 C[1=1-]311 1 rrCC 1=1=1] I I 5 I__ __ _ _ Failure Stress-psi 11 27.86 , 1 I I-I -4-4 4 4I-I-1-6 I-i-1� Total Pore Pressure- S) ' 12.01 ' ' CCI=1 ]]14 ILCC i=11] p 1 1 I I 0 Strain Rate-Inchestmin. i 0.05000I I 1 0 5 10 15 20 i 1 Failure Strain-% 1 14.61 I I AXIAL STRAIN-% a,Failure-psi 39.861 63 Failure-psi ; 12.00" TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: UU Tdaxial-UU-2 PROJECT:Trinity River Siphon SAMPLE TYPE:CME TUBE LOCATION:Fort Worth,TX DESCRIPTION:LEAN CLAY WITH SAND(CL),medium to dark brown PROJECT NO:CDM02007 - SAMPLE LOCATION:B-3,17-18ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATEA/24/2003 LL:33 PL:14 131:20 Percent-200:70 GREGORYGEOTECHN/CAL PLATE: B-UU.9 REMARKS:Tested at natural moisture. UU-02007-B-3,17-18.xis PROJECT NO:CDM02007 PROJECT:Tdnfty River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:LEAN CLAY WITH SAND(CL),medium to dark brown Cell Pressure: 12.0 psi Back Pressure: 0.0 psi Eff.Stress: 12.0 psi Dia. : 1.97 in Area: 3.034 In Ht. 4.93 in Weight: 474.2 g No. Def. Load U AU Load 9 s% Con'. Ala Ch al' al':a3 p' q (in) Dial (psi) (psi) (lbs) (in/in) Area (psi) (psi) (psi) (psi) (psi) • s In 1 0.0000 3.00 0.00 0.00 0.00 0.0 0.0 3.034 0.00 12.00 12.00 1.0W 12.00 0.00 2 0.0100 23.00 0.00 0.00 20.00 0.002 0.20 3.040 6.58 12.00 18.58 1.548 15.29 3.29 3 0.0200 32.00 0.00 0.00 29.00 0.004 0.41 3.046 9.52 12.00 21.52 1.793 16.76 4.76 4 0.0300 38.00 0.00 0.00 35.00 0.006 0.61 3.052 11.47 12.00 23.47 1.956 17.73 5.73 5 0.0400 43.00 0.00 0.00 40.00 0.008 0.81 3.058 13.08 12.00 25.08 2.090 18.54 6.54 6 0.0500 48.00 0.00 0.00 45.00 0.010 1.01 3.065 14.68 12.00 26.68 2.224 19.34 7.34 7 0.0600 51.00 0.00 0.00 48.00 0.012 1.22 3.071 15.63 12.00 27.63 2.302 19.81 7.81 a 8 0.0700 54.00 0.00 0.00 51.00 0.014 1.42 3.077 16.57 12.00 28.57 2.381 20.29 8.29 9 0.0800 57.00 0.00 0.00 54.00 0.016 1.62 3.084 17.51 12.00 29.51 2.459 20.76 8.76 10 0.0900 59.00 0.00 0.00 56.00 0.018 1.83 3.090 18.12 12.00 30.12 2.510 21.06 9.06 11 0.1000 62.00 0.00 0.00 59.00 0.020 2.03 3.096 19.05 12.00 31.05 2.588 21.53 9.53 12 0.1100 63.00 0.00 0.00 60.00 0.022 2.23 3.103 19.34 12.00 31.34 2.611 21.67 9.67 13 0.1200 65.00 0.00 0.00 62.00 0.024 2.44 3.109 19.94 12.00 31.94 2.662 21.97 9.97 = 14 0.1300 67.00 0.00 0.00 64.00 0.026 2.64 3.116 20.54 12.00 32.54 2.712 22.27 10.27 15 0.1400 68.00 0.00 0.00 65.00 0.028 2.84 3.122 20.82 12.00 32.82 2.735 22.41 10.41 16 0.1500 69.00 0.00 0.00 66.00 0.030 3.04 3.129 21.09 12.00 33.09 2.758 22.55 10.55 17 0.1600 71.00 0.00 0.00 68.00 0.032 3.25 3.135 21.69 12.00 33.69 2.807 22.84 10.84 18 0.1700 73.00 0.00 0.00 70.00 0.035 3.45 3.142 22.28 12.00 34.28 2.857 23.14 11.14 19 0.1900 74.00 0.00 0.00 71.00 0.039 3.86 3.155 22.50 12.00 34.50 2.875 23.25 11.25 20 0.2000 75.00 0.00 0.00 72.00 0.041 4.06 3.162 22.77 12.00 34.77 2.898 23.39 11.39 21 0.2100 76.00 0.00 0.00 73.00 0.043 4.26 3.169 23.04 12.00 35.04 2.920 23.52 11.52 22 0.2200 78.00 0.00 0.00 75.00 0.045 4.47 3.175 23.62 12.00 35.62 2.968 23.81 11.81 23 0.2300 79.00 0.00 0.00 76.00 0.047 4.67 3.182 23.88 12.00 35.88 2.990 23.94 11.94 24 0.2400 80.00 0.00 0.00 77.00 0.049 4.87 3.189 24.15 12.00 36.15 3.012 24.07 12.07 25 0.2600 82.00 0.00 0.00 79.00 0.053 5.28 3.203 24.67 12.00 36.67 3.056 24.33 12.33 26 0.2800 83.00 0.00 0.00 80.00 0.057 5.68 3.216 24.87 12.00 36.87 3.073 24.44 12.44 27 0.2900 84.00 0.00 0.00 81.00 0.059 5.89 3.223 25.13 12.00 37.13 3.094 24.56 12.56 28 0.3100 85.00 0.00 0.00 82.00 0.063 6.29 3.237 25.33 12.00 37.33 3.111 24.66 12.66 29 0.3200 86.00 0.00 0.00 83.00 0.065 6.50 3.244 25.58 12.00 37.58 3.132 24.79 12.79 30 0.3300 87.00 0.00 0.00 84.00 0.067 6.70 3.251 25.83 12.00 37.83 3.153 24.92 12.92 31 0.3500 88.00 0.41 0.41 85.00 0.071 7.10 3.266 26.03 11.59 37.62 3.246 24.60 13.01 32 0.3700 89.00 0.00 0.00 86.00 0.075 7.51 3.280 26.22 12.00 38.22 3.185 25.11 13.11 33 0.3900 89.00 0.00 0.00 86.00 0.079 7.92 3.294 26.10 12.00 38.10 3.175 25.05 13.05 34 0.4100 90.00 0.00 0.00 87.00 0.083 8.32 3.309 26.29 12.00 38.29 3.191 25.15 13.15 35 0.4200 91.00 0.00 0.00 88.00 0.085 8.53 3.316 26.54 12.00 38.54 3.211 25.27 13.27 36 0.4300 92.00 0.00 0.00 89.00 0.087 8.73 3.324 26.78 12.00 38.78 3.231 25.39 13.39 37 0.4600 93.00 0.00 0.00 90.00 0.093 9.34 3.346 26.90 12.00 38.90 3.241 25.45 13.45 38 0.5000 94.00 0.00 0.00 91.00 0.101 10.15 3.376 26.95 12.00 38.95 3.246 25.48 13.48 39 0.5100 96.00 0.00 0.00 93.00 0.104 10.35 3.384 27.48 12.00 39.48 3.290 25.74 13.74 40 0.5200 95.00 0.00 0.00 92.00 0.106 10.56 3.392 27.13 12.00 39.13 3.260 25.56 13.56 41 0.5400 96.00 0.00 0.00 93.00 0.110 10.96 3.407 27.30 12.00 39.30 3.275 25.65 13.65 42 0.5600 97.00 0.00 0.00 94.00 0.114 11.37 3.423 27.46 12.00 39.46 3.289 25.73 13.73 43 0.5800 98.00 0.00 0.00 95.00 0.118 11.77 3.438 27.63 12.00 39.63 3.302 25.81 13.81 44 0.6200 99.00 0.00 0.00 96.00 0.126 12.59 3.470 27.66 12.00 39.66 3.305 25.83 13.83 45 0.6800 100.00 0.00 0.00 97.00 0.138 13.80 3.519 27.56 12.00 39.56 3.297 25.78 13.78 146 0.7000 101.00 0.00 0.00 98.00 0.142 14.21 3.536 27.71 12.00 39.71 3.310 25.86 13.86 , 47 0.7100 101.00 0.00 0.00 98.00 0.144 14.41 3.544 27.65 12.00 39.65 3.304 25.82 13.82 48 0.7200 102.00 0.00 0.00 99.00 0.146 14.62 3.553 27.86 12.00 39.86 3.322 25.93 13.93 49 0.7300 102.00 0.00 0.00 99.00 0.148 14.82 3.561 27.80 12.00 39.80 3.317 25.90 13.90 4 50 0.7400 102.00 0.00 0.00 99.00 0.150 15.02 3.570 27.73 12.00 39.73 3.311 25.87 13.87 GREGORY GEOTECHNICAL I1I1-19nn7_R_3 17_1A vlc Di eTc•01 11 1 M. TRIAXIAL SHEAR TEST REPORT 25 L_I_ _L_1_1_L__J_L_1_J_ _I_J_L_1_ _L_t_J_L_ 11 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 -I-�-r-I- -r-I-'r-r--'r-r-1-'r- -1-�-r-1- -r-,-'r-r--i-r-I-1- -,-�-r-I- -r-,-�-r- _I-1_L_I_ _LJ_1_L-_J-L_I_J_ _I_J_L_I- _L_I-J_L__J_L_I-J_ -I-J_L_I_ _L_I-J_L I I I I I I I I 1 1 I I I I 1 1 11 1 1 I I 1 1 I I I I I I 1 1 -,-T-r-,- -r-,-T-r--�-r-I-'r- -,--,-r-,- -r-,-T-r--T-r-,-�- -,-T-r-,- -r-,-�-r- 20 I I I I I I I I I I I I I I I I I I I I I I I I I I 1 1 I I I I -,-T-r-,- -r-,-T-r--T-r-,-T- --:--I-r-1- -r-,-T-r--�-r-,-�- -I-�-r-,- -r-,-i-r- _I-4-L_I- -J-L_I- J_L-1-J- -1-J-L_I- -L-I-J_L I I I I I I I I I I I I 11 1 1 I I I I 11 1 1 I I I I I I I I 05 -, -T-r-,- -r-,-'T-r--4-,--,-T- -,-�-r-,- 4 4 -,-T-r-,- -r-,-T-r- a - 1- -9 _I-J_I... _L_I_J-L--J_L_I--1 _I_J_I--1_ _L-I-J-L_ 15 1 1 1 1 I I I I I I I I I I I I I I I I 1 1 1 1 I I 1 1 I I I I co -'-;-�-1- -�-1-4-L--4-1 -1-4- -1--1- 1--1-4-I---4-L-I-4- -'-4-1-'- -L-1-4-L- ,L, 1 I I 1 I I I I I I I I I I I I 11 I 1 11 1 1 I I I I 1 1 1 1 Q. -,-n-rT -r-,-T-r--T-r-,-n- -i- -r-I- -r-,-T-r--n-r-,-T- -,- -r-,- -r-,-�-r- F"' -1-4-1--1- -1--1-4-i- -4-L-1-4- -1-4-1--1- -i--1-4-L--4-L-1-4- -1-4-i--I- -6-1-4-i-- co 1I I I I I I I I I I I I I I I I I I I I I I I 1 1 1 1 I I I I -,-T-r-t- -r-,-T—r--T—r-,—T— —,--I-r-I- -r-,-T—r--T—r-,-�- -,-T-r-,- -r-,-n-r- w 10 = I I I I I I_ -,-T-r-,- -r-,-T-Ir- T-rI ,-T -,-T rI -I- - -I I -- I;, - -1-4-i--I- -1--1-4-6--4-1--1-4- -1-4- -1- -I--1-4-1. 4-6-1-4- -1-4-F-I- -L-1-4-i-- I I I I I I I I i l l l I I I I I I I I 1 1 1 1 11 1 1 I I I I ------- ---------------- ------- ------r--1-,--I-T- -,-T-r-,- -r-,--I-r- -1-4-I--I- -1--1-4 --4-F-1-4- -1-4-1--1- -1--1-4-F--4-F-1-4- -I-4-F-1- -F-1-4-F- 5 I I I I 1 1 i I I I I 1 1 1 11 1 1 1 1 1 1 I I I I 1 1 ! I I I I I I 1 1 I I I I I I I I I I I I I I I 1 1 1 1 I I I I -1-4-.--1- - -I-4-F--4-F-1-4- -1- �-1- -H-1-4-F--+-I--1-4- -1-4-�-1- -F-1-4-�- 11 _I -- I-I I_ I_ I_ I __ i_ 1 1 I I I I 1 1 1 'I'1-I'I I I I I -,-�-�-,- -r - -1-+-H-1- -H-I-4-i---4-i--1-+- -I--I- -I- -�-1-+-H--+-F-I-i- -1-�-�-1- -f-1-�-f- i 1 1 1 I I I I I I I I I I I I I I I I I I I I I I I I I I I I -I'1_F-,- -F-,-I-F__I'I'I'I- 'I-1'1 0 0 5 10 15 20 25 30 35 40 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 6.8 psi SPECIMEN NO. 1 2 3 4 20 INITIAL I-1.- -41 J-r Moisture Content-% ; 21.71 LEI-I--IJJJ LLL.L_I-I-I-1 I I I I LLL1_JJ11 LILLJJJJ Dry Density Densf cf 99A" 1111 IIII lilt IIII -P rr�I -11TT rrrr --1-I a 15 Diameter-Inches ; 1.961 Height-Inches ; 3.92; (n LLI_I JJ1 LLLL I_IJJ W ' 1 J J 11 11 L L 1_I_I J AT TEST 11 I IIII IIII IIII ~ 10 r rr i T n T rrrr rI-1 j Final Moisture-% 21.71 O Dry Density-pcf 99.0i LI-I_JJ 11 L L L L 1_I_IJ I_I_1_t i 11..L L L L 1 1 1 1 Calculated Diameter(in.) 1 1.961, 1 ; I I I I- I I I I I I I I I I-ICI I I I I w 5 r r rl -�T T T r r r r rn it Height-inches ; 3.921 1 ; 0 -4 J J 4 1-1-1- I_,_,-4 Effect.Cell Pressure-psi 5.01 1 LU_I JJ11 LLLL I_t_t_I I I I I l , , , , , , , , , , , Failure Stress-psi 13.601 I i 7 r r.F i I-1_1 Total Pore Pressure- si 1 5.01, 1 ' rrl- I -I-I r r rrrr I-I-11 P , 1 1 1 0 Strain Rate-Inches/min. Is 0.040001 1 1 0 5 10 15 20 It i Failure Strain-% 1 7.91 1 1 AXIAL STRAIN-% t31 Failure-psi 18.60; cr3 Failure-psi ; 5.001, TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: UU Triaxlal-UU-3 PROJECT:Trinity River Siphon SAMPLE TYPE:CME TUBE LOCATION:Fort Worth,TX DESCRIPTION:SANDY LEAN CLAY(CL),dark brown PROJECT NO:CDMO2007 SAMPLE LOCATION:B-3,23-24ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATER/24/2003 LL:31 PL:12 PI:19 Percent-200:74 GREGORYGEOTECHNICAL PLATE: B-UU.10 REMARKS:Tested at natural moisture. UU-02007-B-3,23-24.x1s PROJECT NO:CDMO2007 PROJECT:Trinity River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:SANDY LEAN CLAY(CL),dark brown Cell Pressure: 5.0 psi Back Pressure: 0.0 psi Eff.Stress: 5.0 psi Dia. : 1.96 in Area: 3.023 in? Ht. 3.92 in Weight: 375.3 g No. Def. Load U DU Load e e% Corr. Da a3' al' al':a3I p' q On) Dial (psi) (psi) (Ibs) (in/in) Area (psn (psi) (psq (psi) (psq 1 0.0000 2.00 0.00 0.00 0.00 0.0 0.0 3.023 0.00 5.00 5.00 1.000 5.00 0.00 2 0.0100 13.00 0.00 0.00 11.00 0.003 0.25 3.031 3.63 5.00 8.63 1.726 6.81 1.81 3 0.0200 21.00 0.00 0.00 19.00 0.005 0.51 3.039 6.25 5.00 11.25 2.250 8.13 3.13 4 0.0300 26.00 0.00 0.00 24.00 0.008 0.76 3.047 7.88 5.00 12.88 2.576 8.94 3.94 5 0.0400 28.00 0.00 0.00 26.00 0.010 1.02 3.054 8.51 5.00 13.51 2.702 9.26 4.26 6 0.0500 31.00 0.00 0.00 29.00 0.013 1.27 3.062 9.47 5.00 14.47 Z894 9.73 4.73 7 0.0600 32.00 0.00 0.00 30.00 0.015 1.53 3.070 9.77 5.00 14.77 2.954 9.89 4.89 + 8 0.0700 33.00 0.00 0.00 31.00 0.018 1.78 3.078 10.07 5.00 15.07 3.014 10.04 5.04 9 0.0800 35.00 0.00 0.00 33.00 0.020 2.04 3.086 10.69 5.00 15.69 3.139 10.35 5.35 10 0.0900 37.00 0.00 0.00 35.00 0.023 2.29 3.094 11.31 5.00 16.31 3.262 10.66 5.66 11 0.1000 37.00 0.00 0.00 35.00 0.025 2.55 3.102 11.28 5.00 16.28 3.256 10.64 5.64 12 0.1100 37.00 0.00 0.00 35.00 0.028 2.80 3.111 11.25 5.00 16.25 3.250 10.63 5.63 13 0.1200 38.00 0.00 0.00 36.00 0.031 3.06 3.119 11.54 5.00 16.54 3.309 10.77 5.77 - 14 0.1300 40.00 0.00 0.00 38.00 0.033 3.31 3.127 12.15 5.00 17.15 3.431 11.08 6.08 15 0.1400 40.00 0.00 0.00 38.00 0.036 3.57 3.135 12.12 5.00 17.12 3.424 11.06 6.06 16 0.1500 40.00 0.00 0.00 38.00 0.038 3.82 3.143 12.09 5.00 17.09 3.418 11.04 6.04 17 0.1600 41.00 0.00 0.00 39.00 0.041 4.08 3.152 12.37 5.00 17.37 3.475 11.19 6.19 18 0.1700 42.00 0.00 0.00 40.00 0.043 4.33 3.160 12.66 5.00 17.66 3.531 11.33 6.33 19 0.1900 42.00 0.00 0.00 40.00 0.048 4.84 3.177 12.59 5.00 17.59 3.518 11.29 6.29 20 0.2000 43.00 0.00 0.00 41.00 0.051 5.10 3.186 12.87 5.00 17.87 3.574 11.44 6.44 21 0.2100 43.00 0.00 0.00 41.00 0.054 5.35 3.194 12.84 5.00 17.84 3.567 11.42 6.42 22 0.2200 43.00 0.00 0.00 41.00 0.056 5.61 3.203 12.80 5.00 17.80 3.560 11.40 6.40 23 0.2300 43.00 0.00 0.00 41.00 0.059 5.86 3.212 12.77 5.00 17.77 3.553 11.38 6.38 24 0.2400 44.00 0.00 0.00 42.00 0.061 6.12 3.220 13.04 5.00 18.04 3.608 11.52 6.52 25 0.2500 45.00 0.00 0.00 43.00 0.064 6.37 3.229 13.32 5.00 18.32 3.663 11.66 6.66 26 0.2600 47.00 0.00 0.00 45.00 0.066 6.63 3.238 13.90 5.00 18.90 3.780 11.95 6.95 27 0.2700 47.00 0.00 0.00 45.00 0.069 6.88 3.247 13.86 5.00 18.86 3.772 11.93 6.93 28 0.2800 47.00 0.00 0.00 45.00 0.071 7.13 3.256 13.82 5.00 18.82 3.764 11.91 6.91 29 0.2900 48.00 0.00 0.00 46.00 0.074 7.39 3.265 14.09 5.00 19.09 3.818 12.05 7.05 30 0.3000 48.00 0.00 0.00 46.00 0.076 7.64 3.274 14.05 5.00 19.05 3.810 12.03 7.03 31 0.3100 48.00 0.41 0.41 46.00 0.079 7.90 3.283 14.01 4.59 18.60 4.053 11.60 7.01 32 0.3200 48.00 0.00 0.00 46.00 0.082 8.15 3.292 13.97 5.00 18.97 3.795 11.99 6.99 33 0.3300 48.00 0.00 0.00 46.00 0.084 8.41 3.301 13.94 5.00 18.94 3.787 11.97 6.97 34 0.3400 49.00 0.00 0.00 47.00 0.087 8.66 3.310 14.20 5.00 19.20 3.840 12.10 7.10 35 0.3500 49.00 0.00 0.00 47.00 0.089 8.92 3.319 14.16 5.00 19.16 3.832 12.08 7.08 36 0.3700 50.00 0.00 0.00 48.00 0.094 9.43 3.338 14.38 5.00 19.38 3.876 12.19 7.19 37 0.4200 51.00 0.00 0.00 49.00 0.107 10.70 3.386 14.47 5.00 19.47 3.895 12.24 7.24 38 0.4400 52.00 0.00 0.00 50.00 0.112 11.21 3.405 14.68 5.00 19.68 3.937 12.34 7.34 39 0.4700 53.00 0.00 0.00 51.00 0.120 11.98 3.435 14.85 5.00 19.85 3.970 12.42 7.42 40 0.5100 54.00 0.00 0.00 52.00 0.130 13.00 3.475 14.96 5.00 19.96 3.993 12.48 7.48 41 0.5600 55.00 0.00 0.00 53.00 0.143 14.27 3.527 15.03 5.00 20.03 4.006 12.51 7.51 42 0.5800 56.00 0.00 0.00 54.00 0.148 14.78 3.548 15.22 5.00 20.22 4.044 12.61 7.61 43 0.6000 57.00 0.00 0.00 55.00 0.153 15.29 3.569 15.41 5.00 20.41 4.082 12.71 7.71 44 0.6200 56.00 0.00 0.00 54.00 0.158 15.80 3.591 15.04 5.00 20.04 4.008 12.52 7.52 ...45 0.6300 57.00 0.00 0.00 55.00 0.161 16.05 3.601 15.27 5.00 20.27 4.054 12.64 7.64 46 0.6400 58.00 0.00 0.00 56.00 0.163 16.31 3.612 15.50 5.00 20.50 4.100 12.75 7.75 47 0.6500 59.00 0.00 0.00 57.00 0.166 16.56 3.623 15.73 5.00 20.73 4.146 12.87 7.87 48 0.6700 58.00 0.00 0.00 56.00 0.171 17.07 3.646 15.36 5.00 20.36 4.072 12.68 7.68 49 0.6800 59.00 0.00 0.00 57.00 0.173 17.33 3.657 15.59 5.00 20.59 4.117 12.79 7.79 50 0.6900 59.00 0.00 0.00 57.00 0.176 17.58 3.668 15.54 5.00 20.54 4.108 12.77 7.77 GRF[.'nRV f:FATF!14111/Cd/ 111 LMnn7_97_9'Yi_9d vM of wTr.13 111 1 4 n- TRIAXIAL SHEAR TEST REPORT I I 1 1 1 1 1 1 1 I I I I i I I I 1 I 1 1 1 I I I 1 I 1 1 I 1 1 I I I 1 I t 1 i 1 I I 1 1 I I I 1 1 I I 1 I I 1 i f I 1 I 1 I I I I 1 1 I 1 1 1 60 I i I I i I I I I I I I I 1 I I I I 1 1 I I 1 I 1 1 I I I 1 I i 1 1 1 35 I I I I 1 1 1 i I I I 1 1 I 1 1 1 I --L-_L-J-- � I I I 1 I I I I I 1 I I 1 1 1 1 I 1 Lug 40 I I I I I 1 I 1 1 1 1 I 1 1 1 I 1 1 1 I I 1 I I I I I 1 I 1 1 i --1---I--+- --1---I--+-- --I---1--4-- --I--_I-- --I---I---1-- --I---1--�-- x I I I 1 1 I I I 1 I 1 ( I 1 1 1 I 1 I I I 1 1 I I I __f ------ ---- - 1 20 I I 1 I 1 I I I I I 1 I I I I I 1 I --'-'--'- --'--'--'- ---------- - I 1 1 I I 1 1 1 1 1 1 I 1 I I 1 I 1 1 I 1 1 I I I I 1 I 1 I I 1 1 1 I I 1 I 1 1 I I 1 1 I 1 1 1 I 1 I 1 I I I- I 0 0 20 40 60 80 100 120 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 41.3 psi SPECIMEN NO. 1 2 3 4 100 INITIAL Moisture Content-% ; 12. LI-I-J 1 1 L L-1-1-4-1 J 1 1 L L 31, i 1 1 1 16 IIJJ 11 L !IJJ 1LLL 1 1 1 1 1 1 1 1 I I I 1 1 1 1 1 1 1 1 Dry Density-pcf 1 124.21 I 1 � 80 , , , 7r I I I I I I I I I I I Diameter-inches 1 2.741 1 1 a. rrn Trrr rrl� T r r r I-I-I +++h 1-I-1-I +}I-t- Height-inches 1 5.691 1 i fn LI_ Al L L I-IJ J 1 L L L w 60 " " " " " " ' AT TEST IIII IIII IIII IIII r I-I T T 1-'r r1-i T r r r Final Moisture-% 12.31 co VI-I-I-I T T r r 1-1-I-1 T r r r -1 i+}I- I_I-1-I ++I-F Dry Density-pcf 124.2, 1_I 1 i 1 i I_I_i i i L L L Calculated Diameter(in.) ; 2.741 { II Ilil II11 IIII 1 1 1 1 wr rn T T r r rl i-1 Trrr Height-inches i 5.691, 1 1 0 r l-1 y Y t t h I-I-1 ti t t I-t- 20 Effect.Cell Pressure-psi 1 5.01 1 1 L.1-I J 1 1 L L 1-1-I J I L L L. i i , , , , Failure Stress-psi I 82.581 1 i ii1 T T i r i I-I i I i I i Total Pore Pressure-psi ; 5.01 I 1 rrl� Trrr 1-n-i Trrr P 1 I 1 1 0 Strain Rate-Inchestmin. 1 0.055001 I I 0 5 10 15 20 Failure Strain-% 1 7.21 1 i AXIAL STRAIN-% a,Failure-psi 87.581 a3 Failure-psi TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: UU Triaxial-UU-6 PROJECT:Trinity River Siphon SAMPLE TYPE:SHELBY TUBE LOCATION:Fort Worth,TX DESCRIPTION:SANDY LEAN CLAY(CL), brown PROJECT NO:CDM02007 -- SAMPLE LOCATION:B-4,2-4ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATE:4/24/2003 ILL:33 PL:13 P1:20 Percent-200:66 GREGORYGEOTECHNICAL PLATE: B-UU.11 REMARKS:Tested at natural moisture. UU-02007-13-4,2-4ads PROJECT NO:CDM02007 PROJECT:Trinity River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:SANDY LEAN CLAY(CL), brown Cell Pressure: 5.0 psi Back Pressure: 0.0 psi Elf.Stress: 6.0 psi Dia. : 2.74 in Area: 5.915 In Ht. : 5.69 in Weight: 1233.0 g No. Def. Load U AU Load & &% Corr. Aa a3 all all:a31 pI q (in) Dial (PSQ (ps) (ibs) (in/in) Area (psq (psq (psq (psi) (psi) 1 0.0000 5.00 0.00 0.00 0.00 0.0 0.0 5.915 0.00 5.00 5.00 1.000 5.00 0.00 2 0.0100 68.00 0.00 0.00 63.00 0.002 0.18 5.926 10.63 5.00 15.63 3.126 10.32 5.32 3 0.0200 114.00 0.00 0.00 109.00 0.004 0.35 5.936 18.36 5.00 23.36 4.673 14.18 9.18 4 0.0300 150.00 0.00 0.00 145.00 0.005 0.53 5.946 24.38 5.00 29.38 5.877 17.19 12.19 5 0,0400 178.00 0.00 0.00 173.00 0.007 0.70 5.957 29.D4 5.00 34.04 6.808 19.52 14.52 6 0.0500 201.00 0.00 0.00 196.00 0,009 0.88 5.968 32.84 5.00 37.84 7.569 21.42 16.42 7 0.0600 226.00 0.00 0.00 221.00 0.011 1.05 5.978 36.97 5.00 41.97 8.394 23.48 18.48 8 0.0700 247.00 0.00 0.00 242.00 0.012 1.23 5.989 40.41 5.00 45.41 9.082 25.20 20.20 9 0.0800 266.00 0.00 0.00 261.00 0.014 1.41 5.999 43.50 5.00 48.50 9.701 26.75 21.75 10 0.0900 282.00 0.00 0.00 277.00 0.016 1,58 6.010 46.09 5.00 51.09 10.218 28.04 23.04 11 0.1000 299.00 0,00 0.00 294.00 0.018 1.76 6.021 48.83 5.00 53.83 10.766 29.41 24.41 12 0.1100 314.00 0.00 0.00 309.00 0.019 1.93 6.032 51.23 5.00 56.23 11.246 30.61 25.61 13 0.1200 327.00 0.00 0.00 322.00 0.021 2.11 6.043 53.29 5.00 58.29 11.658 31.64 26.64 14 0.1300 342.00 0.00 0.00 337.00 0.023 2.28 6.053 55.67 5.00 60.67 12.134 32.84 27.84 15 0.1400 353.00 0.00 0.00 348.00 0.025 2.46 6.064 57.39 5.00 62.39 12.477 33.69 28.69 16 0.1500 364.00 0.00 0.00 359.00 0.026 2.64 6.075 59.09 5.00 64.09 12.819 34.55 29.55 17 0.1700 387.00 0.00 0.00 382.00 0.030 2.99 6.097 62.65 5,00 67.65 13.530 36.33 31.33 18 0.1900 406.00 0.00 0.00 401,00 0.033 3.34 6.119 65.53 5.00 70.53 14.106 37.76 32.76 19 0.2100 426.00 0.00 0.00 421.00 0.037 3.69 6.142 68.55 5.00 73.55 14.710 39.27 34.27 20 0.2300 442.00 0.00 0.00 437.00 0.040 4.04 6.164 70.89 5.00 75.89 15.179 40.45 35.45 21 0.2500 457.00 0.00 0.00 452.00 0.044 4.39 6.187 73.06 5.00 78.06 15.612 41.53 36.53 22 0.2700 471.00 0.00 0.00 466.00 0.047 4.74 6.210 75.04 5.00 80.D4 16.009 42.52 37.52 23 0.2900 482.00 0.00 0.00 477.00 0.051 5.09 6.233 76.53 5.00 81.53 16.306 43.27 38.27 24 0.3100 494.00 0.00 0.00 489.00 0.054 5.45 6.256 78.17 5.00 83.17 16.633 44.08 39.08 25 0.3200 499.00 0.00 0.00 494.00 0.056 5.62 6.267 78.82 5.00 83.82 16.764 44.41 39.41 26 0.3400 509.00 0.00 0.00 504.00 0,060 5.97 6.291 80.12 5.00 85.12 17.023 45.06 40.06 27 0.3600 517.00 0.00 0.00 512.00 0.063 6.32 6.314 81.08 5.00 86.08 17.217 45.54 40.54 28 0.3800 525.00 0.00 0.00 520.00 0.067 6.68 6.338 82.D4 5.00 87.D4 17.408 46.02 41.02 29 0.3900 528.00 0.00 0.00 523.00 0.069 6.85 6,350 82.36 5.00 87.36 17.472 46.18 41.18 30 0.4000 531.00 0.00 0.00 525.00 0.070 7.03 6.362 82.68 5.00 87.68 17.535 46.34 41.34 31 0.4100 534.00 0.41 0.41 529,00 0.072 7.20 6.374 82.99 4.59 87.58 19.081 46.09 41.50 32 0.4200 537.00 0.00 0.00 532.00 0,074 7.38 6.386 83.30 5.00 88.30 17.661 46.65 41.65 33 0.4300 541.00 0.00 0.D0 536.00 0.076 7.55 6.398 83.77 5.00 88.77 17.754 46.89 41.89 34 0.4400 543.00 0.00 0.00 538.00 0.077 7.73 6.411 83.92 5.00 88.92 17.785 46.96 41.96 35 0.4500 545.D0 0.00 0.00 540.00 0.079 7.91 6,423 84.07 5.00 89.07 17.815 47.04 42.04 36 0.4600 546,00 0.D0 0.00 541.00 0.081 8.08 6.435 84.07 5.00 89.07 17,814 47.03 42.03 37 0.4700 548.00 0.00 0.D0 543.00 0.083 8.26 6.447 84.22 5.00 89.22 17.844 47.11 42.11 38 0.4800 550.00 0.00 0.00 545.00 0.084 8.43 6.460 84.37 5.00 89.37 17.873 47.18 42.18 39 0.4900 552.00 0,00 0.00 547.00 0.086 8.61 6.472 84.51 5.00 89.51 17.903 47.26 42.26 40 0.5000 552.00 0.00 0.00 547.D0 0.088 8.78 6.485 84.35 5.00 89.35 17.870 47.18 42.18 41 0.5100 553.00 0.00 0.00 548.00 0.090 8,96 6.497 84.34 5.00 89.34 17.869 47.17 42.17 42 0.5200 552.00 0.00 0.00 547.00 0.091 9.14 6.510 84.03 5.D0 89.03 17.805 47.01 42.01 43 0.5300 551.00 0.00 0.00 546.00 0.093 9.31 6.522 83.71 5.00 88.71 17.742 46.86 41.86 44 0.5400 550.00 0.00 O.DD 545.00 0.095 9.49 6.535 83.40 5.00 88.40 17.679 46.70 41.70 45 0.5500 548.00 0.00 0.00 543.00 0.097 9.66 6.548 82.93 5.06 87.93 17.586 46.46 41.46 46 0.5600 546.00 0.00 0.00 541.00 0.098 9.84 6.561 82.46 5.00 87.46 17.493 46.23 41.23 47 0.5700 544.00 0.00 0.00 539.00 0.100 10.01 6.573 82.00 5.00 87.00 17.400 46.00 41.00 48 0.5800 542.00 0.00 0.00 537.00 0.102 10.19 6.586 81.53 5.00 86.53 17.307 45.77 40.77 49 0.5900 540.0o 0.00 0.00 535.00 0.104 10.36 6.599 81.07 5.00 86.07 17.214 45.54 40.54 50 0.8000 537.00 0.00 0.00 532.00 0.105 10.54 6.612 80.46 5.00 85.46 17.092 45.23 40.23 GREGORYGFOTFC14Af1Ca1 111 t-Mnm_a_n I-A..i. of n're.0 1111 44- TRIAXIAL SHEAR TEST REPORT 70 I I I I I 1 i I 1 1 I I 1 1 I t 1 1 I I I I I 1 1 I I 1 1 I I 1 I I I I 60 1 1 1 1 I I 1 1 I I I I I I 1 I 1 1 I 1 I k I I I I i 1 I I I 1 1 I I 1 I I I I I 03 50 I 1 i I 1 I 1 1 I I I I I i I I t I I 1 I I --;--,-- r-- --,- ,-- - --r---,---�-- --r --,---,-- --r--,- -- --r--r-I- - - I I I I r-I 1 I I I I I 1 I I I I I w 40 H I I I 1 1 1 1 I 1 1 1 I 1 1 1 , 1 1 U) --,--�--�- --,---,--�-- -- ---,--�-- -- --,--�-- -- --,--�-- - ---,--,-- 1 1 I 1 I i 1 I 1 I I 1 t I 1 1 30 I� I 1 1 1 1 1 I I I I I 1 1 I I I I I 1 1 1 I I I t 1 1 1 1 I I I I I 1 I 1 I I I I I I I I I 1 20 --------- --------- ------- - II- I 10 1 I I I I I I I 1 I 1 I 1 I I I I I I t 1 1 I I 1 I I 1 1 I I I I I I I - ---------- ---------- ---------- - I I I I I I I I 1 1 I 1 I 1 i 1 I 1 1 0 0 20 40 60 80 100 120 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 55.2 psi SPECIMEN NO. 1 2 3 4 120 INITIAL r;-:-I T T r r I-1-11 T r r r Moisture Content-% i 12.1 i rl- TTrr-:::-1-1Trrr � , « rl 1 Trrr ri11 TTrr I 1 , I 100 Dry Density-pcf 1 119.41 1 I 55 r 11 T T r r I-1-11 T r r r Diameter-inches 1 2.741 1 1 p„ r 11 TTrr 1-n-1 Trrr 1 I 1 I 80 r-11 T T r r rn 1 T r r r Height-Inches 1 5.791 i 1 w i-11 T T r 11 I-111 T r r 11 AT TEST of I-1-1 TTrr rn1 Trrr ~ 60 1-1-I -r T r r I-111 T r r r Final Moisture-% 1 12.1 1 1 1 1 q 1 11 Y t r r I-111 T r r r Dry Density-pcf 1 119.41' 1 i 1-rr1 _r t r 1- 1-1-1-1 t r 1-r , 1 1-1-1-1 Y t r r 1-1-1-1 T r r r Calculated Diameter On.) 2.741 > rr11 Y t r r 1-1 11 T r r r Height-inches i 5.791 1 i w rr11 Ittr 1-1-1-1 ttrr 0 1-1-1 1 t t r 1-1-1-1 t t r r Effect.Cell Pressure-psi 6.0� 11 1. 20 r1-,� rt t r r I-I-11 Trrr Failure Stress-psi ; 110.401 r1-1-1 rt t t r I-I-11 t t r r Total Pore Pressure-psi 1 6.01 1 1 r1-11 rttrr r111 ttrr p i i 0 Strain Rate-inches/min. 1 0.055001 1 1 0 5 10 15 20 Failure Strain-% 3.6� AXIAL STRAIN-% Q,Failure-psi ; 116.401 a3 Failure-psi ; 6.001 TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST 8 NO: UU Triaxial-UU-7 PROJECT:Trinity River Siphon SAMPLE TYPE:SHELBY TUBE LOCATION:Fort Worth,TX DESCRIPTION:SANDY LEAN CLAY(CL), brown PROJECT NO:CDM02007 SAMPLE LOCATION:B-4,7-8 ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATE:4%24/2003 LL:33 PL:12 131:20 Percent-200:74 GREGORYGEOTECHNICAL I PLATE: B-UU.12 REMARKS:Tested at natural moisture.Classification tests at 8-9ft UU-02007-B-4,7-8.xis PROJECT NO:CDMO2007 PROJECT:Trinity River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:SANDY LEAN CLAY(CL), brown Cell Pressure: 6.0 psi Back Pressure: 0.0 psi Eff.Stress: 6.0 psi Dia. : 2.74 in Area: 5.892 in' Ht. : 5.79 in Weight: 1198.6 g �^ No. Def. Load U DU Load s s% Con'. Ov a3I at' al':a3 P' q (in) Dial (psiv)y (psi) (lbs) (InAn) Area (psi) (psi) (psi) (psi) (Ps �f i)1 0.0000 2.00 0.00 0.00 0.00 0.0 0.0 5.892 0.00 6.00 6.00 1.000 6.00 0.00 2 0.01 o0 59.00 0.00 0.00 57.00 0.002 0.17 5.902 9.66 6.00 15.66 2.610 10.83 4.83 3 0.0200 144.00 0.00 0.00 142.00 0.003 0.35 5.913 24.02 6.00 30.02 5.003 18.01 12.01 4 0.0300 222.00 0.00 0.00 220.00 0.005 0.52 5.923 37.14 6.00 43.14 7.191 24.57 18.57 5 0.0400 281.00 0.00 0.00 279.00 0.007 0.69 5.933 47.02 6.00 53.02 8.837 29.51 23.51 6 0.0500 329.00 0.00 0.00 327.00 0.009 0.86 5.943 55.02 6.00 61.02 10.170 33.51 27.51 7 0.0600 367.00 0.00 0.00 365.00 0.010 1.04 5.954 61.30 6.00 67.30 11.217 36.65 30.65 6 0.0700 400.00 0.00 0.00 398.00 0.012 1.21 5.964 66.73 6.00 72.73 12.122 39.37 33.37 9 0.0800 429.00 0.00 0.00 427.00 0.014 1.38 5.975 71.47 6.00 77.47 12.911 41.73 35.73 10 0.0900 458.00 0.00 0.00 456.00 0.016 1.55 5.985 76.19 6.00 82.19 13.698 44.09 38.09 + 11 0.1000 485.00 0.00 0.00 483.00 0.017 1.73 5.996 80.56 6.00 86.56 14.426 46.28 40.28 12 0.1100 512.00 0.00 0.00 510.00 0.019 1.90 6.006 84.91 6.00 90.91 15.152 48.46 42.46 13 0.1200 538.00 0.00 0.00 536.00 0.021 2.07 6.017 89.08 6.00 95.08 15.847 50.54 44.54 14 0.1300 562.00 0.00 0.00 560.00 0.022 2.25 6.028 92.91 6.00 98.91 16.485 52.45 46.45 15 0.1400 584.00 0.00 0.00 582.00 0.024 2.42 6.038 96.39 6.00 102.39 17.064 54.19 48.19 16 0.1500 605.00 0.00 0.00 603.00 0.026 2.59 6.049 99.69 6.00 105.69 17.615 55.84 49.84 17 0.1600 623.00 0.00 0.00 621.00 0.028 2.76 6.060 102.48 6.00 108.48 18.080 57.24 51.24 16 0.1700 638.00 0.00 0.00 636.00 0.029 2.94 6.070 104.77 6.00 110.77 18.462 58.38 52.38 19 0.1800 653.00 0.00 0.00 651.00 0.031 3.11 6.081 107.05 6.00 113.05 18.842 59.52 53.52 20 0.1900 665.00 0.00 0.00 663.00 0.033 3.28 6.092 108.83 6.00 114.83 19.138 60.41 54.41 21 0.2000 672.00 0.00 0.00 670.00 0.035 3.46 6.103 109.78 6.00 115.78 19.297 60.89 54.89 22 0.2100 677.00 0.00 0.00 675.00 0.036 3.63 6.114 110.40 6.00 116.40 19.400 61.20 55.20 _ 23 0.22o0 678.o0 o.o0 0.00 676.00 0.038 3.80 6.125 110.37 6.00 116.37 19.395 61.18 55.18 24 o.23o0 675.00 o.o0 0.00 673.00 0.040 3.97 6.136 109.68 6.00 115.68 19.280 60.84 54.84 25 0.2400 671.00 0.00 0.00 669.00 0.041 4.15 6.147 108.83 6.00 114.83 19.139 60.42 54.42 26 0.2500 664.00 0.00 0.00 662.00 0.043 4.32 6.158 107.50 6.00 113.50 18.917 59.75 53.75 27 0.2600 654.00 0.00 0.00 652.00 0.045 4.49 6.169 105.68 6.00 111.68 18.614 58.84 52.84 l:00:rn0V 01707I TCI'uwI'n I I If I nnM 7 0 A 7 o.A, „ .r.-... ......� TRIAXIAL SHEAR TEST REPORT 25 1_L_1_ _LJ_1_L__1_L_I_1_ _1_1_L_I_ _L_I_1_L__1_L_t_1_ _I_1_L_I_ _L_1_1_L_ 11 1 1 I I 1 1 I I I I 11 1 1 I I 1 1 I I I I I I I I I l l s -1—�-r-,- -r�-�-r--�-r-I-T— —1—�-r-,- -r-,-�-r--�-r-,-�- -1—�-r-,- -r-1-�-r- L_I_ _LJ_1_L__1—L_I-1_ _I_1- _L_I_A—L--1—L—I-1_ _I_1_L_I_ _L_I_1_L_ 11 1 1 11 1 1 I I I I I I I -,-�-r-,- -r-I-T-r---T-r- T- --T-r Ir -rI-Ir--4- 4- -7I-rI I Ir-I 4-rI 20 - 1 1 1 1 I I I I I I I I I I I I I I I I I I I I I I I I 11 1 1 —L—I-1—L--1—L-1--1— —1-4—L_I— _L_I—J—L---1—L-1-4— —t_.4_L_I— —L_I-4—L— I I I I 11 1 1 I I I I I I I I I t l l I I I I I I I I I I I I —,-4—r—,— —r-,-4—r--4 r—,-1— —,-1_r—I— —r-,-7—r--4—r—i-1— —,-1-r—,— —r—,-1-r- CL _1— 4—L__1_L—{—J— _I—J—L_I— _L-1-4—L---1-1—4— .4 1- 1- _L-1—a—L_ ' 15 I I I i I I I i I I i 1 I 1 i I I I I I I I I I 1 I I 1 I 1 I I co —1-1-I—I— —1—-1-4—I--;—L-1—;— —1-4—L-1— —1'-1—;—L--4—L—I—�— —I—�—L—I— —I —I—�—I-- co 11 I 1 I I I I I I I I I I I I I I I I I I I I I I 1 1 I I I I ———— —— ———— —r—— —r r—— —r— f— —L-1-4—L--4-1--I-4— —1—.4—L-1 _ —1 4— 4_ —I-4—L—I— —I--1-4—L— co 1I -,-i rI -,I- rI -,I-iI-rI --1I-rI -I-1I r1 -1-4 ,-1-1r--1I-rI -,I ?I-rI -,I- rI 'iI-rI - 10 = -I-iI-rI -I- -rI 7I-Ir--1t--1 -1-1 1 -,1-�1-r1 -1- -r1 1- 1-r1 --1I-rI -,I-�I- -1- I -I r1 -1-�1-r1 - —I— — -- —L-1— }—L--�—L-1— — —1— —L-1— —�—I—;— -- —4� 4 1 ;— _I-4 _I L—1—-4—I- -:-4 - ;-r1 -- -rI -I-�I-rI — - —1-4— —I— —H-1-4— 1 —,-4-1--1— — —1-4—H__-1— —1-4— —1-4— —I_ — —1-4—I-- 5 I I 1 1 I I I I 1 1 1 I I I I I I I I I I I I I I I I 11 1 1 I I I I I I I I I I I I I I I 11 1 1 I I I I I I I I I I I I —I-4—H—I— —1--I-4— 4 1-1-4— —1-4—I--I— —I--I-4—�--4—�—h4— —1-4—I'-1— —I-4—I'- 1I I I I I I I I I I t_ 11 I 1 11 1 1 —_ r'1—I'1" I I 1 1 1 I t 1 1 1 I 1 I I 1 1 1 I 1 i I 1 I —1-4—F—I— —H—I—i—I--- —F—I--1— —1-4—I--I— —F-1-4—h--4—F-1-4— —i—i—F—I— — —1--I—H— I 1 0 0 5 10 15 20 25 30 35 40 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 12.6 psi SPECIMEN NO. 1 2 3 7 4 40Lj_ INITIAL t 1=1=r r=1=rr ti=1=rt Moisture Content-% i 17.8' I i I3=1=C 7]=CL ]=r-CI + Dry Density-pcf I 107.7I I I 1J=1=L 3=1=LL J=1=L1 a 30. _- --- -- Diameter-inches 2.76; I]=1=C Height-inches 1 5.74-1 N 1J=LL J=1=L1 w ATTEST ~ 20 I =1= 7 J=L L ]_C C I Final Moisture-% 1 17.81 CO _ o +-4 —1= 4-4 1=+ _4=1=1-+ Dry Density-pcf I 107.71 I _I=C i ti-r r ti—I—r t Calculated Diameter(in.) ; 2.761, +-1=1=I- 4-1=N� 0 10 =_'_C =O_C L ]Z C C I Height-inches ; 5.741 ; I +a_1_ 4_I_,=a. -=1—ti+ Effect.Cell Pressure-psi 11.01 13=1=C 1]=CL ]=CCI I 1 t t—1—r 1—I—r r 1-r r t Failure Stress-psi i 25.191 1 +a—1—1— 4 _� : 1_I_L a Total Pore Pressure-psi ' 11.0' ' I]=1=C 1�=CL ..—. p I I I I 0 Strain Rate-inches/min. i 0.055001 1 I I I 0 5 10 15 Failure Strain-% 9.1 AXIAL STRAIN-% 61 Failure-psi ; 36.19; cr3 Failure-psi ; 11.00; TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: UU Tdaxial-UU-8 PROJECT:Trinity River Siphon SAMPLE TYPE:SHELBY TUBE LOCATION:Fort Worth,TX DESCRIPTION:SANDY LEAN CLAY(CL), brown PROJECT NO:CDM02007 SAMPLE LOCATION:B-4,15-16ft CLIENT.CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATEA/24/2003 LL:32 PLA4 PI:19 Percent-200:66 GREGORYGEOTECHNICAL PLATE: B-UU.13 REMARKS:Tested at natural moisture. UU-02007-13-4,15-16.)ds PROJECT NO:CDM02007 PROJECT:Trinity River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:SANDY LEAN CLAY(CL), brown Cell Pressure: 11.0 psi Back Pressure: 0.0 psi Eff.Stress: 11.0 psi Dia. : Z76 in Area: 5.993 In Ht. 5.74 in Weight: 1144.8 g No. Def. Load U AU Load 6 6% Corr. Aa a3 all at':a3' P' q (in) Dial (psi) (Psq (lbs) on/in) Area (psi) (psi) (Pso (Psi) (psi) < 01, 1 ;" B n 1 0.0000 3.00 0.00 0.00 0.00 0.0 0.0 5.993 0.00 11.00 11.00 1.000 11.00 0.00 2 0.0100 27.00 0.00 0.00 24.00 0.002 0.17 6.003 4.00 11.00 15.00 1.363 13.00 2.00 3 0.0200 40.00 0.00 0.00 37.00 0.003 0.35 6.014 6.15 11.00 17.15 1.559 14.08 3.08 4 0.0300 48.00 0.00 0.00 45.00 0.005 0.52 6.024 7.47 11.00 18.47 1.679 14.73 3.73 5 0.0400 56.00 0.00 0.00 53.00 0.007 0.70 6.035 8.78 11.00 19.78 1.798 15.39 4.39 6 0.0500 63.00 0.00 0.00 60.00 0.009 0.87 6.046 9.92 11.00 20.92 1.902 15.96 4.96 7 0.0600 70.00 0.00 0.00 67.00 0.010 1.05 6.056 11.06 11.00 22.06 2.006 16.53 5.53 8 0.0700 76.00 0.00 0.00 73.00 0.012 1.22 6.067 12.03 11.00 23.03 2.094 17.02 6.02 9 0.0800 81.00 0.00 0.00 78.00 0.014 1.39 6.078 12.83 11.00 23.83 2.167 17.42 6.42 10 0.0900 86.00 0.00 0.00 83.00 0.016 1.57 6.089 13.63 11.00 24.63 2.239 17.82 6.82 11 0.1000 91.00 0.00 0.00 88.00 0.017 1.74 6.099 14.43 11.00 25.43 2.312 18.21 7.21 12 0.1100 96.00 0.00 0.00 93.00 0.019 1.92 6.110 15.22 11.00 26.22 2.384 18.61 7.61 13 0.1200 100.00 0.00 0.00 97.00 0.021 2.09 6.121 15.85 11.00 26.85 2.441 18.92 7.92 14 0.1300 104.00 0.00 0.00 101.00 0.023 2.27 6.132 16.47 11.00 27.47 2.497 19.24 8.24 15 0.1400 107.00 0.00 0.00 104.00 0.024 2.44 6.143 16.93 11.00 27.93 2.539 19.47 8,47 16 0.1500 111.00 0.00 0.00 108.00 0.026 2.62 6.154 17.55 11.00 28.55 2.595 19.77 8.77 _. 17 0.1600 114.00 0.00 0.00 111.00 0.028 2.79 6.165 18.00 11.00 29.00 2.637 20.00 9.00 18 0.1700 116.00 0.00 0.00 113.00 0.030 2.96 6.176 18.30 11.00 29.30 2.663 20.15 9.15 19 0.1900 120.00 0.00 0.00 117.00 0.033 3.31 6.198 18.88 11.00 29.88 2.716 20.44 9.44 20 0.2000 122.00 0.00 0.00 119.00 0.035 3.49 6.210 19.16 11.00 30.16 2.742 20.58 9.58 21 0.2100 126.00 0.00 0.00 123.00 0,037 3.66 6.221 19.77 11.00 30.77 2.798 20.89 9.89 22 0.2200 127.00 0.00 0.00 124.00 0.038 3.84 6.232 19.90 11.00 30.90 2.809 20.95 9.95 23 0.2300 131.00 0,00 0.00 128.00 0.040 4.01 6.243 20.50 11.00 31.50 2.864 21.25 10.25 24 0.2400 132.00 0.00 0.00 129.00 0.042 4.18 6.255 20.62 11.00 31.62 2.875 21.31 10.31 25 0.2500 134.00 0.00 0.00 131.00 0.044 4.36 6.266 20.91 11.00 31.91 2.901 21.45 10.45 26 0.2600 137.00 0.00 0.00 134.00 0.045 4.53 6.278 21.35 11.00 32.35 2.941 21.67 10.67 27 0.2700 138.00 0.00 0.00 135.00 0.047 4.71 6.289 21.47 11.00 32.47 2.951 21.73 10.73 28 0.2800 139.00 0.00 0.00 136.00 0.049 4.88 6.301 21.59 11.00 32.59 2.962 21.79 10.79 29 0.2900 142.00 0.00 0.00 139.00 0.051 5.06 6.312 22.02 11.00 33.02 3.002 22.01 11.01 30 0.3000 144.00 0.00 0.00 141.00 0.052 5.23 6.324 22.30 11.00 33.30 3.027 22.15 11.15 31 0.3100 145.00 0.41 0.41 142.00 0.054 5.41 6.335 22.41 10.59 33.00 3.116 21.80 11.21 32 0.3200 147.00 0.00 0.00 144.00 0.056 5.58 6.347 22.69 11,00 33.69 3.062 22.34 11.34 33 0.3300 148.00 0.00 0.00 145.00 0,058 5.75 6.359 22.80 11.00 33.80 3.073 22.40 11.40 34 0.3400 150.00 0.00 0.00 147.00 0.059 5.93 6.371 23.07 11.00 34.07 3.098 22.54 11.54 35 0.3500 151.00 0.00 0.00 148.00 0.061 6.10 6.382 23.19 11.00 34.19 3.108 22.59 11.59 36 0.3600 153.00 0.00 0.00 150.00 0.063 6.28 6.394 23.46 11.00 34.46 3.133 22.73 11.73 37 0.3700 154.00 0.00 0.00 151.00 0.065 6.45 6.406 23.57 11.00 34.57 3.143 22.79 11.79 38 0.3800 155.00 0.00 0.00 152.00 0.066 6.63 6.418 23.68 11.00 34.68 3.153 22.84 11.84 39 0.3900 157.00 0.00 0.00 154.00 0.068 6.80 6.430 23.95 11.00 34.95 3.177 22.97 11.97 40 0.4000 159.00 0.00 0.00 156.00 0.070 6.97 6.442 24.21 11.00 35.21 3.201 23.11 12.11 41 0.4100 159.00 0.00 0.00 156.00 0.071 7.15 6.454 24.17 11.00 35.17 3.197 23.08 12.08 42 0.4200 160.00 0.00 0.00 157.00 0.073 7.32 6.467 24.28 11.00 35.28 3.207 23.14 12.14 43 0.4300 161.00 0.00 0.00 158.00 0.075 7.50 6.479 24.39 11.00 35.39 3.217 23.19 12.19 44 0.4400 162.00 0.00 0.00 159.00 0.077 7.67 6.491 24.50 11.00 35.50 3.227 23.25 12.25 45 0.4500 164.00 0.00 0.00 161.00 0.078 7.85 6.503 24.76 11.00 35.76 3.251 23.38 12.38 46 0.4600 165.00 0.00 0.00 162.00 0.080 8.02 6.516 24.66 11.00 35.86 3.260 23.43 12.43 47 0.4700 166.00 0.00 0.00 163.00 0.082 8.20 6.528 24.97 11.00 35.97 3.270 23.48 12.48 48 0.4800 167.00 0.00 0.00 164.00 0.084 8.37 6.540 25.08 11.00 36.08 3.280 23.54 12.54 49 0.4900 168.00 0.00 0.00 165.00 0.085 8.54 6.553 25.18 11.00 36.18 3.289 23.59 12.59 50 0.5200 169.00 0.00 0.00 166.00 0.091 9.07 6.591 25.19 11.00 36.19 3.290 23.59 12.59 TRIAXIAL SHEAR TEST REPORT 25 _L_1_ _L A—L__J_L_I—J_ _I—J_L_I_ _L-1—J_L 1 1 1 1 I I I I i l l s 1 1 1 1 11 1 1 I l i l I I I I I I I I r--1—r-I-1— —1'1'r—,— —r'1'1-r- _i_1_L_I_ -1-J_L_I_ -L_I-1_L__J_L-I_1_ -1_1_L_I- -L-1-J-L- I I I I 1 1 1 1 I I I I I I I I I I I I I I I I I I I I I I I I 20 I I I I I I I I I I I I I 1 1 1 i l l l I I I I I I I -I-1—r-1— —r—I-1—r--1—r_1I—1— —,--r—Ir—.I—I 1—r -r—r—— T—r—I—-r— —I—I—I,--I— —r—,—'I—r- -1—J—L-1— J-1--1—'I— —1I—'I-1--I— —L-1—'1-1'— I l t l 1 1 1 1 I l t l 1 1 1 1 I I I I I I I I 1 1 1 I I I I —1-1—r—,— —r-,— r—r—— r—r—,— r— —,— r—r—,— —r—,—?—r--63 r—r—�1— —,--r—r—,— —r—,—i—r— IL -1-4-9- -1--1- 1-L.--.4-1--1-J- -1- 1-1--1- - -1-J-�--{-1--1- 1- -I-.4-L.-I- -L.t-1-1-- 15 - 11 1 1 I I 1 1 I I 1 1 I I I I I I I I I I I I t I I I I I I I,,,J 1 1 1 1 i l l l I I 1 1 i l l l I I I I 11 1 1 I I I I I l l t -,- r-r-,- -r-,--r-r---T-r-,-1- -,--T-r-,- -r-,- T r--1-r-,--r- -,--i-r-,- -r-,-1-r- co I I I I I I 1 1 I I I I I I I 11 1 1 I I I l l t I I I I -,- r r-,- -r-r-r-r--7-r-,-4- -,- ,- -,- -r-,- r-r- -,- - �- -,--r-r-,- -r-,-1-r- 10 = I I I I I I I I 11 1 1 I I I I 1 1 1 1 I I I I I I I I 11 1 1 rn -,-1-r-,- -r-,--r-,--- --r--I1II--i4III---1HIII '- -r-r-,- —1-4-1-- 1- -4— 4—/:1— —— I—I— —1-4—H--4-1--,—i_ —\-4- -1— I--1-4— I-1-4-1 -I- - -I-4-H4- -4- 4-I---4- --4- - 4-I 11 4- - 4 --I .1- -I- 1- 4- - 4-I-1-4I- - -1-4-1'-1 -1--1-4-I- i 1 1 I_ _1 1 I_1 _ I I _t_ t_ _I I_1 I— I_ _I _I_ 1_1 --__—_ I I I I I I I I —I 1 1 1 I I I I I I I I I 1 1 I T 1 1 I I I I —I-4—t—I— _I--1-4—H_— —1--t-4_ —1--1—►--I— —F-1-4-1- 4—F-1-4— 1 1 1 I I _I_ I_1 1 1 1 O I I I I 1 i 1 4 I I I I I I I 11 1 1 11 1 1 I I I I I I I I 0 5 10 15 20 25 30 35 40 PRINCIPAL STRESS-PSI TOTAL STRESS PARAMETERS = 0.0 deg C = 12.0 psi SPECIMEN NO. 1 2 3 4 40 _jj L.L INITIAL 1=r-LL1-1— -1=1-11 Moisture Content-% ; 12.1 35 1-1-1-1—1 i i i ++I-I- I-1-1-1 Dry Density-pcf i 115.Oi 30 I_I_I_ 7 3 3 !:1:,. _I=1=1 Diameter-inches 1.371 1-FI-I -1-1-f4 -1-1-1-1 i i ai 25 CI=1= 3 3 3 I I C C-LI-1=1 Height-inches , 2.99 Lu -- -- AT TEST FI- -1i4i +CFI- I-I-I1 3 3 I L r-C i=00 1 ,~ 20 Final Moisture-% I 12.1 I I I =1 4 4 +L L L Dry Density-pcf ; 115.01 CI=1_]333 IICC_CIDD _ 15 ________ _ Calculated Diameter On.) ; 1.371 Q H i-1-I -I 4 4 4 +1-1-1- 1-1-1-1 1 0 10 C CID >3 3 3 I L C C-07-1 D Height-inches ; 2.991 1-1-1-.a a 4 4.4. 1 I_;-1-1 Effect.Cell Pressure-psi 11.01 CC1=1-7333 ILCC 0=17 I 5 Failure Stress-psi ; 24.021 =1=1=1.► +a=1=1= 1=1=1=1 Total Pore Pressure-psi ' 11.01 I I CCO-:3333 ILCC-1=11] p i I 0 Strain Rate-inches/min. I 0.055001 I i 0 5 10 15 20 Failure Strain-% I 4.0 AXIAL STRAIN-% 1 I I a,Failure-psi 35.02, a3 Failure-psI ; 11.001 TEST DESCRIPTION PROJECT INFORMATION TYPE OF TEST&NO: UU Triaxial-UU-8A PROJECT:Tdnity River Siphon SAMPLE TYPE:SHELBY TUBE LOCATION:Fort Worth,TX DESCRIPTION:SANDY LEAN CLAY(CL), brown PROJECT NO:CDMO2007 SAMPLE LOCATION:B-4,15-16 ft CLIENT:CDM ASSUMED SPECIFIC GRAVITY: 2.70 DATEA/24/2003 LL:33 PL:12 PI:20 Percent-200:74 GREGORYGEOTECHNICAL PLATE: B-UU.14 REMARKS:Tested at natural moisture.Remolded specimen. UU-02007-13-4,15-16A.xls PROJECT NO:CDM02007 PROJECT:Trinity River Siphon CLIENT:CDM SPECIMEN NO.1 DESCRIPTION:SANDY LEAN CLAY(CL), brown Cell Pressure: 11.0 psi Back Pressure: 0.0 psi Eff.Stress: 11.0 psi Dia. : 1.37 In Area: 1.478 In Ht. 2.99 In Weight: 149.8 g No. Def. Load U AU Load s s% Corr. Aa a3I all al':a3I p' q (in) Dial (psi) (psq (lbs) (InAn) Area (psi) (psi) (psi) (psi) (psi) on - 1 0.0000 2.00 0.00 0.00 0.00 0.0 0.0 1.478 0.00 11.00 11.00 1.000 11.00 0.00 2 0.0100 16,00 0.00 0.00 14.00 0.003 0.33 1.483 9.44 11.00 20.44 1.858 15.72 4.72 3 0.0200 24.00 0.00 0.00 22.00 0.007 0.67 1.488 14.78 11.00 25.78 2.344 18.39 7.39 4 0.0300 27.00 0.00 0.00 25.00 0.010 1.00 1.493 16.74 11.00 27.74 2.522 19.37 8.37 5 0.0400 30.00 0.00 0.00 28.00 0.013 1.34 1.498 18.69 11.00 29.69 2.699 20.34 9.34 6 0.0500 31.00 0.00 0.00 29.00 0.017 1.67 1.504 19.29 11.00 30.29 2.753 20.64 9.64 7 0.0600 33.00 0.00 0.00 31.00 0.020 2.00 1.509 20.55 11.00 31.55 2.868 21.27 10.27 8 0.0700 34.00 0.00 0.00 32.00 0.023 2.34 1.514 21.14 11.00 32.14 2.922 21.57 10.57 9 0.0800 35.00 0.00 0.00 33.00 0.027 2.67 1.519 21.72 11.00 32.72 2.975 21.86 10.86 10 0.0900 36.00 0.00 0.00 34.00 0.030 3.01 1.524 22.31 11.00 33.31 3.028 22.15 11.15 11 0.1000 37.00 0.00 0.00 35.00 0.033 3.34 1.530 22.88 11.00 33.88 3.080 22.44 11.44 12 0.1100 37.00 0.00 0.00 35.00 0.037 3.67 1.535 22.80 11.00 33.80 3.073 22.40 11.40 13 0.1200 39.00 0.00 0.00 37.00 0.040 4.01 1.540 24.02 11.00 35.02 3.184 23.01 12.01 14 0.1300 39.00 0.00 0.00 37.00 0.043 4.34 1.546 23.94 11.00 34.94 3.176 22.97 11.97 15 0.1400 39.00 0.00 0.00 37.00 0.047 4.68 1.551 23.86 11.00 34.86 3.169 22.93 11.93 16 0.1500 39.00 0.00 0.00 37.00 0.050 5.01 1.556 23.77 11.00 34.77 3.161 22.89 11.89 _ 17 0.1600 36.00 0.00 0.00 34.00 0.053 5.34 1.562 21.77 11.00 32.77 2.979 21.88 10.88 18 0.1700 36.00 0.00 0.00 34.00 0.057 5.68 1.567 21.69 11.00 32.69 2.972 21.85 10.85 19 0.1800 36.00 0,00 0.00 34.00 0.060 6.01 1.573 21.61 11.00 32.61 2.965 21.81 10.81 20 0.1900 36.00 0.00 0.00 34.00 0.063 6.35 1.579 21.54 11.00 32.54 2.958 21.77 10.77 21 0.2000 35.00 0.00 0.00 33.00 0.067 6.68 1.584 20.83 11.00 31.83 2.894 21.41 10.41 22 0.2100 35.00 0.00 0.00 33.00 0.070 7.01 1.590 20.76 11.00 31.76 2.887 21.38 10.38 23 0.2200 34.00 0.00 0.00 32.00 0.073 7.35 1.596 20.05 11.00 31.05 2.823 21.03 10.03 24 0.2300 34.00 0.00 0.00 32.00 0.077 7.68 1.601 19.98 11.00 30.98 2.817 20.99 9.99 25 0.2400 34.00 0.00 0.00 32.00 0.080 8.02 1.607 19.91 11.00 30.91 2.810 20.95 9.95 26 0.2500 33.00 0.00 0.00 31.00 0.084 8.35 1,613 19.22 11.00 30.22 2.747 20.61 9.61 27 0,2600 32.00 0.00 0.00 30.00 0.087 8.68 1.619 18.53 11.00 29.53 2.685 20.26 9.26 UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 40.0 I I I 1 1 I 1 I I I I I 1 1 i 1 1 I 1 I I I I 1 I 1 I t 1 4- -r''1--1--r- - 'I--r-r- -'1--I--r-r- --1--1--r-T- 1 I 1 t I I 1 1 1 1 I I 1 I t 1 30.0 1 I I I I 1 I I I I 1 I 1 I I I fA -r-� -i--r- -�-�--r-r- -�--1--r-r- --i--1--r-r- - - -�--�- - - --�--L- - - --I--L- - --I--L- - I I I 1 1 I I I I 1 I I 1 1 1 1 -1_J--I--I-- --1-J--I--I-- --1--I--I--L- -J--1--1--4.- 1 ( I 1 1 I 1 I 1 1 I I 1 I I I Lu 20.0 1 I I 1 I I 1 1 I I I I I I 1 I - -J__I-_L_ _J-J__I-_I-- -J- _-4_-1__1.-L_ 1 1 1 1 I 1 I 1 1 1 I 1 1 I I - -'1--I--1'- -Y-'1--I--r- -'1--I--r-t- -'1--1--r-t- W _ - Y. 1I _JI_-1-_1 _ 1L_LI _ a _ 10.0 O -T- _�__I 1 1 T-I ---,- �- -1--,--�-�- - --,--� , i-r-T- V 1-J--I--i- -1-J--I--L- -1-J--L-1'- -J--I--L-1- I I 1 I 1 I I 1 1 1 I I I 1 1 1 -t--I--I--r- -Y-1--t--t- --I--1--r-t- --I--I--r-t- I 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA T Moisture Content % 15.3 Dry Density pcf 113.3 / Diameter in 2.77 I Height in 5.76 I � j Heigth/Diameter Ratio 2.08 j Calculated Saturation % 84.8 Calculated Void Ratio 0.49 I Assumed Specific Gravity 2.70 Failure Strain % 9.21 Unconfined Compressive Strength ksf 35.48 Undrained Shear Strength ksf 17.74 Strain Rate in/min 0.04 REMARKS: Tested at natural moisture content. Failure Mode : Bulge (Dashed) TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: Shelby Tube PROJECT: Trinity River Siphon SAMPLE LOCATION: B-1,4-5 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: FAT CLAY(CH),dark grayish brown PROJECT NO: CDM02007 CLIENT: CDM DATE: 4/18/03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.1 54 17 37 94 UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: FAT CLAY(CH),dark grayish brown Dia. : 2.77 in Ht. : 5.76 in SAMPLE LOCATION: B-1,4-5 ft Area: 6.022 in^2 Weight: 1188.7 g No. Def. Load Load 6 s% Corr. UC UC UC UC UC/Pa (In) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 6.022 0.0 0 0.000 0.0 0.00 2 0.0100 41.00 41.0 0.002 0.17 6,032 6.8 979 0.979 46.9 0.46 3 0.0200 160.00 160.0 0.003 0.35 6.043 26.5 3813 3.813 182.6 1.80 4 0.0300 333.00 333.0 0.005 0.52 6.053 55.0 7921 7.921 379.3 3.74 5 0.0400 509.00 509.0 0.007 0.69 6.064 83.9 12087 12.087 578.7 5.71 6 0.0500 656.00 656.0 0.009 0.87 6.075 108.0 15550 15.550 744.6 7.35 7 0.0600 770.00 770.0 0.010 1.04 6.085 126.5 18221 18.221 872.4 8.61 8 0.0700 860.00 860.0 0.012 1.22 6.096 141.1 20315 20.315 972.7 9.60 9 0.0800 935,00 935.0 0.014 1.39 6.107 153.1 22048 22,048 10557 10.42 10 0.0900 990.00 990.0 0.016 1.56 6.118 161.8 23303 23.303 1115.8 11.01 11 0.1000 1043.00 1043.0 0.017 1.74 6.128 170.2 24508 24.508 1173.5 11.58 12 0,1100 1089.00 1089.0 0.019 1.91 6,139 177.4 25543 25.543 1223.1 12.07 13 0.1200 1128.00 1128.0 0.021 2.08 6.150 183.4 26411 26.411 1264,E 12.48 _ 14 0.1300 1165.00 1165.0 0.023 2.26 6.161 189.1 27229 27.229 1303.8 12.86 15 0.1400 1199.00 1199.0 0.024 2.43 6.172 194.3 27974 27.974 1339.4 13.22 16 0.1500 1227.00 1227.0 0.026 2.61 6.183 198.4 28576 28,576 1368,3 13.50 17 0.1600 1255.00 1255.0 0.028 2.78 6.194 202.6 29176 29.176 1397.0 13.78 18 0.1700 1277.00 1277.0 0.030 2.95 6,205 205,8 29635 29.635 1419.0 14.00 19 0.1800 1300.00 1300.0 0.031 3.13 6.216 209.1 30114 30.114 1441,9 14.23 20 0.1900 1320.00 1320.0 0.033 3.30 6.227 212.0 30523 30.523 1461,5 14.42 21 0.2000 1337.00 1337.0 0.035 3.47 6.239 214.3 30860 30.860 1477,7 14.58 22 0.2100 1354.00 1354.0 0.036 3.65 6.250 216.6 31197 31.197 1493.8 14.74 23 0.2200 1369.00 1369.0 0,038 3.82 6.261 218.6 31485 31.485 1507.6 14.87 24 0.2300 1385.00 1385.0 0.040 4.00 6.273 220.8 31796 31.796 1522.4 15.02 25 0.2400 1399.00 1399.0 0.042 4.17 6.284 222.6 32059 32.059 1535.1 15.15 26 0.2500 1413.00 1413.0 0.043 4.34 6.295 224.5 32321 32.321 1547.6 15.27 27 0.2600 1426.00 1426.0 0.045 4.52 6.307 226.1 32559 32.559 1559.0 15.38 28 0.2700 1437.00 1437.0 0.047 4.69 6.318 227.4 32751 32.751 1568.2 15.47 29 0.2800 1449.00 1449.0 0.049 4.86 6.330 228.9 32964 32.964 1578.4 15.57 30 0.2900 1461.00 1461.0 0.050 5.04 6.341 230.4 33176 33.176 1588.6 15.67 31 0.3000 1470.00 1470.0 0.052 5.21 6.353 231.4 33320 33.320 1595.4 15.74 32 0.3100 1481.00 1481.0 0.054 5.38 6.365 232.7 33508 33.508 1604.4 15.83 33 0.3200 1490.00 1490.0 0.056 5.56 6.376 233.7 33649 33.649 1611.2 15.90 34 0.3400 1509.00 1509.0 0.059 5.91 6.400 235.8 33953 33,953 1625.7 16.04 35 0.3600 1526.00 1526.0 0.063 6.25 6.424 237.6 34209 34.209 1638.0 16.16 36 0.3800 1540.00 1540.0 0.066 6.60 6.448 238.9 34395 34.395 1646.9 16.25 - 37 0.4000 1554.00 1554.0 0.069 6.95 6.472 240.1 34578 34.578 1655.7 16.34 38 0.4200 1567.00 1567.0 0.073 7.30 6.496 241.2 34737 34.737 1663,3 16.41 39 0.4400 1579.00 1579.0 0.076 7.64 6.520 242.2 34872 34.872 1669.7 16.47 40 0.4600 15g0.00 1590.0 0.080 7.99 6.545 242.9 34983 34.983 1675.1 16.53 41 0.4800 1600.00 1600.0 0.083 8.34 6.570 243.5 35070 35.070 1679.2 16.57 42 0.4900 1605.00 1605.0 0.085 8.51 6.582 243.8 35113 35.113 1681.3 16.59 43 0.5000 1609.00 1609.0 0.087 8.69 6.595 244.0 35134 35.134 1682.3 16.60 44 0.5100 1612.00 1612.0 0.089 8.86 6.607 244.0 35132 35.132 1682.2 16.60 45 0.5200 1616.00 1616.0 0.090 9.03 6.620 244.1 35152 35.152 1683.2 16.61 46 0.5300 1634.00 1634.0 0.092 9.21 6.633 246.4 35476 35.476 1698.7 16.76 47 0.5400 1628.00 1628.0 0.094 9.38 6.645 245.0 35278 35.278 1689.2 16.67 48 0.5500 1626.00 1626.0 0,096 9.55 6.658 244.2 35167 35.167 1683.9 16,61 49 0.5600 1623.00 1623.0 0.097 9.73 6.671 243.3 35035 35.035 1677,5 16.55 50 0.5700 1621.00 1621.0 0.099 9.90 6.684 242.5 34924 34.924 1672.3 16.50 -____-•--____-•--•--_- PLATE: B-UC.1 a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 I I I 1 I I 1 I I I I I I I I I 1 I I I I I I I 1 I I 1 I 1 I 1 �1.. -r--f--1--r- -t-�--1--r- --1--1--r-r- --1--1--r-r- Y - -1-�--f-- -1- --1--�- -�-.--L-L- -J--�--L-1- 1 f I 1 I i 1 I I 1 1 1 i I I I 15.0 I I I 1 1 I I I 1 I I 1 N - T--f--I r- 1'1'-I''r- I _I _ 1 I 1 I -+- --1--f-- -J-'a--1--1'- -J--I--L-L- -'�--1--I--+'- I I 1 I I I I 1 1 I 1 1 I I 1 1 N --r -1--1--r- -�-�--r-r- --1--f--r-r- -�--1--r-r- W 10.0 I I I I I 1 I I 1 1 I I I 1 I 1 I I I > - -J--1--L- -J-'a--1--1-- -J--1--f--1-- -'�--1--L-1- N I I I I I 1 1 I I I I I I I I I -t-7--I--r- - 1-7--1--r- -7--I--r-t- -7--1--r-r CO) - �--I - - 1- 1- 1 1 - - --1 -1 - - I--I--I - I i i -I--L- -J-J--I--L_ -J--I--L-L- -J--1--L-1_ t1 I I 1 1 I 1 I 1 I I I 1 I I I I 5.0 O I 1 I I 1 1 I 1 I 1 I 1 I 1 1 1 -J--I-_L_L- -J--1--L-1- 1 1 I I I 1 1 1 1 1 I 1 I 1 1 I -t-y--I--r- -1-ti--1--r- -7--1--r-t- -7--I--r-t- I I I I I I I 1 I I I 1 I 1 I 1 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 17.6 Dry Density pcf 119.8 / Diameter in 2.67 I Height in 5.75 I I I Heigth/Diameter Ratio 2.16 1 Calculated Saturation % 116.7 Calculated Void Ratio 0.41 Assumed Specific Gravity 2.70 Failure Strain % 4.70 l Unconfined Compressive Strength ksf 14.31 Undrained Shear Strength ksf 7.15 Strain Rate in/min 0.04 REMARKS: Tested at natural moisture content. Failure Mode : Bulge (Dashed) TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: Shelby Tube PROJECT: Trinity River Siphon SAMPLE LOCATION: B-1,7-9 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: FAT CLAY(CH),dark grayish brown PROJECT NO: CDM02007 CLIENT. CDM DATE: 4/18/03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.2 48 14 34 89 UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: FAT CLAY(CH),dark grayish brown Dia. : 2.67 in Ht. : 5.75 in SAMPLE LOCATION: B-1,7-9 ft Area: 5.582 in42 Weight: 1186.9 g No. Def. Load Load 6 fi% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings in"2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 5.582 0.0 0 0.000 0.0 0.00 2 0.0100 59.00 59.0 0.002 0.17 5.592 10.6 1519 1.519 72.7 0.72 3 0.0200 151.00 151.0 0.003 0.35 5.602 27.0 3882 3.882 185.9 1.83 4 0.0300 235.00 235.0 0.005 0.52 5.612 41.9 6030 6.030 288.7 2.85 5 0.0400 290.00 290.0 0.007 0.70 5.621 51.6 7429 7.429 355.7 3.51 6 0.0500 333.00 333.0 0.009 0.87 5.631 59.1 8515 8.515 407.7 4.02 7 0.0600 369.00 369.0 0.010 1.04 5.641 65.4 9419 9.419 451.0 4.45 8 0.0700 399.00 399.0 0.012 1.22 5.651 70.6 10167 10.167 486.8 4.80 9 0,0800 421.00 421.0 0.014 1.39 5.661 74.4 10709 10.709 512.8 5.06 10 0.0900 441.00 441.0 0.016 1.57 5.671 77.8 11198 11.198 536.2 5.29 11 0.1000 459.00 459.0 0.017 1.74 5.681 80.8 11634 11.634 557.1 5.50 12 0.1100 475.00 475.0 0.019 1.91 5.691 83.5 12019 12.019 575.5 5.68 13 0.1200 488.00 488.0 0.021 2.09 5.701 85.6 12326 12.326 590.2 5.82 14 0.1300 501.00 501.0 0.023 2.26 5.711 87.7 12632 12.632 604.8 5.97 15 0.1400 512.00 512.0 0.024 2.43 5.722 89.5 12886 12.886 617.0 6.09 16 0.1500 522.00 522.0 0.026 2.61 5.732 91.1 13114 13.114 627.9 6.20 17 0.1600 531.00 531.0 0.028 2.78 5.742 92.5 13317 13.317 637.6 6.29 - 18 0.1700 538.00 538.0 0.030 2.96 5.752 93.5 13468 13.46E 644.9 6.36 19 0.1800 546.00 546.0 0.031 3.13 5.763 94.7 13644 13.644 653.3 6.45 20 0.1900 552.00 552.0 0.033 3.30 5.773 95.6 13769 13,769 659.3 6.50 21 0.2000 559.00 559.0 0.035 3.48 5.783 96.7 13918 13.918 666.4 6.58 22 0.2100 563.00 563.0 0.037 3.65 5.794 97.2 13993 13.993 670.0 6.61 23 0.2200 568.00 568.0 0.038 3.83 5.804 97.9 14092 14.092 674.7 6.66 24 0.2300 573.00 573.0 0.040 4.00 5.815 98.5 14190 14.190 679.4 6.70 25 0.2400 576.00 576.0 0.042 4.17 5.825 98.9 14238 14.238 681.8 6.73 26 0.2500 579.00 579.0 0.043 4.35 5.836 99.2 14286 14.286 684.1 6.75 27 0.2600 580.00 580.0 0.045 4.52 5.847 99.2 14285 14.285 684.0 6.75 28 0.2700 582.00 582.0 0.047 4.70 5.857 99.4 14308 14.308 685.1 6.76 29 0.2800 583.00 583.0 0.049 4.87 5.868 99.4 14307 14.307 685.0 6.76 30 0.2900 583,00 583.0 0.050 5.04 5.879 99.2 14281 14.281 683.8 6.75 31 0.3000 582.00 582.0 0.052 5.22 5.890 98.8 14230 14.230 681.4 6.72 32 0.3100 579.00 579.0 0.054 5.39 5.900 98.1 14131 14.131 676.6 6.68 33 0.3200 576.00 576.0 0.056 5.57 5.911 97.4 14032 14.032 671.9 6.63 34 0.3300 573.00 573.0 0.057 5.74 5.922 96.8 13933 13.933 667.1 6.58 PLATE: B-UC.2a GREGORY GEOTECHNICAL UC-02007-B-1,7-9.xls UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 -1-�--j--L- -J-J--�--�- -�-�--L-L- -J--�--L-L- I -L- - --L- -1-J--I--L- -J-J--L-L- -J--I--L-L- Y 1 15.0 fA -r- --1--r- - r- --1--r- - --I--r-r- - --I--r-r- 1 I_ I I I I 1_ 1 I I - , - ,--,--, - - I- ,--�-, - - ,--,--, -, - - ,--�-I - , -�'-'1--I--I-- -1-4--I--1-- -J--I--I--L- -4--1--L-4.- i � -r-Y--I--r- --r-�--r-r- --I--r-r-r- -�--r-r-T- w 10.0 as 1 -T-1--1--r- -Y-7--I--r- --I--I--r-r- -7--I--r-t- W I I 1 1 _ - I- 1__I _I _ -j-�--I--L- -i_-I-- --� L�yy -I-I--1--r I 1 1 I 1 I I 1 I I 1 1 C. I I I I I 1 I I 1 1 I 1 I I I 1 5.0 O -T i--,--,-- - i-i--,--�- - --,--,--i- - --,--�-T- V I I 1 1 I I I 1 1 1 I I I I I 1 t-i--1--r- -Y-1--I--r- -y--1--r-t- -1--I--r-t- 1 1 I I I 1 I I I 1 I I I 1 I I -T-�--,--i - --,--�-r- - --i-r-T- 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 18.1 Dry Density PCf 107.0 / Diameter in 2.04 r j Height in 3.93 I I j Heigth/Diameter Ratio 1.93 I �---� i Calculated Saturation % 84.7 Calculated Void Ratio 0.58 i Assumed Specific Gravity 2.70 11 Failure Strain % 3.31 1 Unconfined Compressive Strength ksf 4.83 Undrained Shear Strength ksf 2.42 Strain Rate in/min 0.04 REMARKS: Tested at natural moisture content. Failure Mode : Bulge (Dashed) y TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: CME TUBE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,1-2 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: FAT CLAY(CH),dark grayish brown PROJECT NO: CDMO2007 CLIENT: CDM DATE: 4/18/03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.3 38 15 23 67 UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: FAT CLAY(CH),dark grayish brown Dia. : 2.04 in Ht. : 3.93 in SAMPLE LOCATION: B-2,1-2tt Area: 3.256 in"2 Weight: 424.0 g No. Def. Load Load E s% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress _ 1 0.0000 0,00 0.0 0.0 0.0 3.256 0.0 0 0.000 0.0 0.00 2 0.0100 19.00 19.0 0.003 0.25 3.264 5.8 838 0.838 40.1 0.40 3 0.0200 35.00 35.0 0.005 0.51 3.272 10.7 1540 1.540 73.7 0.73 4 0.0300 52.00 52.0 0.008 0.76 3.281 15.8 2282 2.282 109.3 1.08 5 0.0400 66.00 66.0 0.010 1.02 3.289 20.1 2889 2.889 138.4 1.37 6 0.0500 77.00 77.0 0.013 1.27 3.298 23.3 3362 3.362 161.0 1.59 7 0.0600 87.00 87.0 0.015 1.53 3.306 26.3 3789 3.789 181.4 1.79 8 0.0700 96.00 96.0 0.018 1.78 3.315 29.0 4170 4.170 199.7 1.97 9 0.0800 102.00 102.0 0.020 2.04 3.323 30.7 4420 4.420 211.6 2.09 10 0.0900 105.00 105.0 0.023 2.29 3.332 31.5 4538 4.538 217.3 2.14 11 0.1000 108.00 108.0 0.025 2.55 3.341 32.3 4655 4.655 222.9 2.20 12 0.1100 110.00 110.0 0.028 2.80 3.349 32.8 4729 4.729 226.4 2.23 13 0.1200 111.00 111.0 0.031 3.05 3.358 33.1 4760 4.760 227.9 2.25 14 0.1300 113.00 113.0 0.033 3.31 3.367 33.6 4833 4.833 231.4 2.28 15 0.1400 112.00 112.0 0.036 3.56 3.376 33.2 4777 4.777 228.7 2.26 16 0.1500 112.00 112.0 0.038 3.82 3.385 33.1 4765 4.765 228.1 2.25 17 0.1600 110.00 110.0 0.041 4.07 3.394 32.4 4667 4.667 223.5 2.20 18 0.1700 105.00 105.0 0.043 4.33 3.403 30.9 4443 4.443 212.7 2.10 19 0.1800 102.00 102.0 0.046 4.58 3.412 29.9 4305 4.305 206.1 2.03 20 0.1900 97.00 97.0 0.048 4.84 3.421 28.4 4083 4.083 195.5 1.93 PI ATF- R-11C 3a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 I 1 1 1 1 I I I I 1 I I 1 1 1 I 1 I 1 1 I I I 1 1 1 1 I I 1{� - T-'I--I--r— —T'-I--I�—r— --I_-1-'-r-r- -1--I--r-T- I I I I 1 I I I I I I 1 1 1 I I 15.0 1 1 1 1 I 1 1 1 I 1 I I I 1 I I C -T--1-4--r- -T-'I--r-r- --I--I--r-r- -1--I--r-r- 1 I 1 W -1'1 I I--L � � -I--�- - --1--1L 1 - 0' -�'-J--1--F'- -'1-J--I--1-- -J--1--L-L- -J--I--1--L- I I I 1 1 1 I 1 1 1 1 1 I I 1 1 U) -T- --1--r— —T--1--I--r- --t--1--r-r- -1--I--r-7- N 1 i 1 1 1 I 1 i 1 1 1 1 1 I 1 N - -y--1--r- -T-y--I--t- -y--I--r-r- -y--I--t-T- 10.0 _ I I Q. 1 I 1 1 I I 1 1 I I I 1 1 1 1 I n 5.0 O T-�--1--�- -7--�--j-r- -1--1--�-�- --�--j-�-T- V 1 I I I I i I 1 1 1 I I 1 1 1 I -t-y--I--r- -1-y--1--t- -1--I--r-t- -ti--1--t-t- I 1 I 1 I I 1 I 1 I I I I 1 I 1 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 12.7 Dry Density pcf 108.7 Diameter In 2.20 Height in 4.60 Heigth/Diameter Ratio 2.09 Calculated Saturation % 62.3 Calculated Void Ratio 0.55 Assumed Specific Gravity 2.70 Failure Strain % 1.96 Unconfined Compressive Strength ksf 10.82 Undrained Shear Strength ksf 5.41 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Failure Mode : Multi-Crack TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: CME TUBE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,7-8 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SANDY FAT CLAY(CH)brown and tan PROJECT NO: CDM02007 CLIENT: CDM DATE: 4/18/03 LL: PL: PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.4 -- 32 12 20 1 78 UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SANDY FAT CLAY(CH)brown and tan Dia. . 2.20 in Ht. : 4.60 in SAMPLE LOCATION: B-2,7-8 ft Area: 3.812 inA2 Weight: 563.8 g No. Def. Load Load 6 s% Corr. UC UC UC UC UC/Pa (in) Reading Qbs) in/in Area Stress Stress Stress Stress Normalized Data Readings in"2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.812 0.0 0 0.000 0.0 0.00 2 0.0050 19.00 19.0 0.001 0.11 3.816 5.0 717 0.717 34.3 0.34 3 0.0100 35.00 35.0 0.002 0.22 3.820 9.2 1319 1.319 63.2 0.62 4 0.0150 58.00 58.0 0.003 0.33 3.824 15.2 2184 2.184 104.6 1.03 5 0.0200 84.00 84.0 0.004 0.43 3.828 21.9 3160 3.160 151.3 1.49 6 0.0250 112.00 112.0 0.005 0.54 3.833 29.2 4208 4.208 201.5 1.99 7 0.0300 140.00 140.0 0.007 0.65 3.837 36.5 5254 5.254 251.6 2.48 8 0.0350 164.00 164.0 0.008 0.76 3.841 42.7 6148 6.148 294.4 2.90 9 0.0400 186.00 186.0 0.009 0.87 3.845 48.4 6966 6.966 333.5 3.29 10 0.0450 207.00 207.0 0.010 0.98 3.849 53.8 7744 7.744 370.8 3.66 11 0.0500 229.00 229.0 0.011 1.09 3.854 59.4 8557 8.557 409.7 4.04 12 0.0550 247.00 247.0 0.012 1.20 3.858 64.0 9220 9.220 441.5 4.36 13 0.0600 261.00 261.0 0,013 1.30 3.862 67.6 9731 9.731 466.0 4.60 14 0.0650 273.00 273.0 0.014 1.41 3.866 70.6 10168 10.168 486.8 4.80 15 0.0700 282.00 282.0 0.015 1.52 3.871 72.9 10491 10.491 502.3 4.96 16 0.0750 287.00 287.0 0.016 1.63 3.875 74.1 10666 10.666 510.7 5.04 17 0.0800 290.00 290.0 0.017 1.74 3.879 74.8 10765 10.765 515.5 5.09 18 0.0850 291.00 291.0 0.018 1.85 3.883 74.9 10790 10.790 516.7 5.10 19 0.0900 292.00 292.0 0.020 1.96 3.888 75.1 10815 10.815 517.9 5.11 20 0.0950 290.00 290.0 0.021 2.07 3.892 74.5 10729 10.729 513.7 5.07 21 0.1000 285.00 285.0 0.022 2.17 3.896 73.1 10533 10.533 504.3 4.98 22 0.1050 273.00 273.0 0.023 2.28 3.901 70.0 10078 10.078 482.6 4.76 23 0.1100 261.00 261.0 0.024 2.39 3.905 66.8 9624 9.624 460.8 4.55 24 0.1150 243.00 243.0 0.025 2.50 3.909 62.2 8951 8.951 428.6 4.23 w w raFr_nov Monrof'"A PAI Iir._� �_Q_� o �e PLATE: B-UC.4a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 I 1 I I I 1 1 I I I I 1 1 1 I I 1 I I I I 1 1 1 I 1 I i I I 1 1 y.. -T--I^-I--r- -7-1--I--r- -"1--I-_r^7- -1_-I--r-T- Y -1-J- --L- -1-J- L -J-J--L-L- -J- L-1- 1 1 1 I I 1 I I t 1 t I I I 1 1 I 15.0 1 4- I 1 I I I 1 1 1 I 1 t I 1 I N 'T 4- -'I--r- -T-1--1'-r- -1''I'-r-r- --I-'1'-r-T- W -f-1- 1--t - -J- --�--L- -J- --1--L_ I I 1 _i W�y i I 1 I- 1 I I 1 I 1 1 I -I--I_1 1 _ li -L--1^-1--I__ _d-'I--I--L- -J--1--4'_ .- --1--I--L-1- �... 1 1 1 1 1 I I t 1 1 1 1 I 1 1 N -t-y--1 - - -�--t--1--r- -'t--I--�-r- --t--1--r-t- W 10.0 I I I 1 1 1 1 I I 1 I I I I I I N N -T-1 -I--r- -t-y--I--r- -'1--1--r_t- -y--l--r-t- - I-�- I I__I ^ I 1 I I I 1 I I I I 1 1 I I 5.0 O I I I 1 i I I I I 1 I I 1 V 1 I I I 1 1 I I I I 1 1 1 I I I t--1--I--r- -rt-y--I--r- -'i--I--r-t- -y--I--r-t- 1 I I I 1 I 1 t 1 I I I I I I t 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA T Moisture Content % 16.7 Dry Density cf 109.1 / Diameter in 2.21 Height in 4.39 Heigth/Diameter Ratio 1.99 Calculated Saturation % 82.6 Calculated Void Ratio 0.55 Assumed Specific Gravity 2.70 I I Failure Strain % 3.88 I 1 Unconfined Compressive Strength ksf 11.41 R Undrained Shear Strength ksf 5.71 Strain Rate in/min 0.04 REMARKS: Tested at natural moisture content. Failure Mode : Bulge (Dashed) TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: CME TUBE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,12-13(t LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: LEAN CLAY(CL),dark brown PROJECT NO: CDMO2007 CLIENT: CDM DATE: 4/18/03 LL: PL: PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.5 49 15 34 1 97 UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: LEAN CLAY(CL),dark brown Dia. . 2.21 in Ht. : 4.39 In SAMPLE LOCATION: B-2,12-13It Area: 3.832 In"2 Weight: 561.7 g No. Def. Load Load s s% Corr. UC UC UC UC UC/Pa on) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings in^2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.832 0.0 0 0.000 0.0 0.00 2 0.0100 20.00 20.0 0.002 0.23 3.841 5.2 750 0.750 35.9 0.35 3 0.02o0 50.00 50.0 0.005 0.46 3.850 13.0 1870 1.870 89.5 0.88 4 0.0300 77.00 77.0 0.007 0.68 3.859 20.0 2873 2.873 137.6 1.36 5 0.0400 96.00 96.0 0.009 0.91 3.868 24.8 3574 3.574 171.1 1.69 6 0.0500 102.00 102.0 0.011 1.14 3.877 26.3 3789 3.789 181.4 1.79 7 0.o6o0 126.o0 126.0 0.014 1.37 3.886 32.4 4670 4.670 223.6 2.21 8 0.0700 147.00 147.0 0.016 1.60 3.895 37.7 5435 5.435 260.2 2.57 9 0.0800 165.00 165.0 0.018 1.82 3.904 42.3 6087 6.087 291.4 2.88 10 0.0900 187.00 187.0 0.021 2.05 3.913 47.8 6882 6.882 329.5 3.25 11 0.1000 214.00 214.0 0.023 2.28 3.922 54.6 7857 7.857 376.2 3.71 12 0.11 oo 239.00 239.0 0.025 2.51 3.931 60.8 8755 8.755 419.2 4.14 13 0.1200 261.00 261.0 0.027 2.74 3.940 66.2 9538 9.538 456.7 4.51 14 0.1300 282.00 282.0 0.030 2.96 3.950 71.4 10282 10.282 492.3 4.86 15 0.1400 297.00 297.0 0.032 3.19 3.959 75.0 10803 10.803 517.3 5.10 16 0.1500 307.00 307.0 0.034 3.42 3.968 77.4 11141 11.141 533.4 5.26 17 0A 600 314.00 314.0 0.036 3.65 3.978 78.9 11368 11.368 544.3 5.37 18 0.1700 316.00 316.0 0.039 3.88 3.987 79.3 11413 11.413 546.5 5.39 19 0.1800 311.00 311.0 0.041 4.10 3.996 77.8 11206 11.206 536.6 5.29 20 0.1900 298.00 298.0 0.043 4.33 4.006 74.4 10712 10.712 512.9 5.06 21 0.2000 287.00 287.0 0.046 4.56 4.016 71.5 10292 10.292 492.8 4.86 MRFRARV BFATFf'LIIk/lf%A1 PLATE: B-UC.5a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 -1-1- --�- -1-J--1--L- -1-J--1--1- I I 1 I I 1 I 1 1 I i t 1 1 I I t I 1 I I 1 I 1 1 1 I 1 I 1 1 t y.. -T-1--1__1'- _Y-1--I_-r- -1__I__r-r- -1--r-r-T- ,� -1- 1--L-1- -J--1--L-1- 1 I I 1 1 I 1 I I 1 I I 1 1 1 1 1 15.0 1 I I 1 1 I I I I I I I -1I- Ir-T1 - W - - 1 7-i FT- -;'-'1--1--L- -J-�--I--L- -'1-"'1--L-1- - J- - L-4.- 1 I I I I I I I 1 I I 1 I I 1 1 N -r-�--I--r- -Y--I--1--r- -�--1--r-r- -1--r-r-r- w 10.0 _1_J__I_-L- -1_J--1__L_ _J__I--L-1•- -J--1__L_1_ N I I I I 1 I I I 1 I 1 I 1 I 1 I N -t-Y--I--r- -Y-'1--I--r- -Y--1--r-T- --1--I--r-t- W 1 I 1 I I 1 I I _ _ 1_ 1-_I__I _ I__I _I _ I _ �y -1-I--1-- -I-1--I I 1 1 1 I I I I I 0L _1-J- -_L_ _J_J-_I__L_ _J_J__L_L_ _J__I__L-1_ 0.. M 5.0 O I 1 1 1 1 I I 1 1 I I 1 I 1 1 I _J__I__L_ _1_J__I__L_ _J_-J-_L_L_ _J__I__L_1- I 1 1 1 1 I 1 I 1 1 I 1 1 1 I 1 t--1--I--1--- -Y--1--1--r- --1--I--r-t- --1--1--1--t- I I 1 I 1 t 1 I I 1 I I 1 1 1 1 0.0 0 5 10 15 20 AXIAL STRAIN- % SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 15.7 Dry Density pcf 111.3 / Diameter in 2.21 Height in 4.58 Heigth/Diameter Ratio 2.07 Calculated Saturation % 82.2 Calculated Void Ratio 0.51 I Assumed Specific Gravity 2.70 11 Failure Strain % 4.59 1 f Unconfined Compressive Strength ksf 6.93 Undrained Shear Strength ksf 3.46 Strain Rate in/min 0.05 REMARKS: Tested at natural moisture content. Failure Mode : Bulge (Dashed) TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: CME TUBE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,17-18 ft LOCATION: Fort Worth,TX l SAMPLE DESCRIPTION: LEAN CLAY(CL),light brown PROJECT NO: CDM02007 ...... CLIENT: CDM DATE: 4/18/03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.6 49 15 34 97 UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: LEAN CLAY(CL),light brown Dia. : 2.21 in Ht. : 4.58 in SAMPLE LOCATION: B-2,17-18 it Area: 3.846 inA2 Weight: 595.3 g No. Def. Load Load s 6% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings in"2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.846 0.0 0 0.000 0.0 0.00 - 2 0.0100 19.00 19.0 0.002 0.22 3.855 4.9 710 0.710 34.0 0.34 3 0.0200 37.00 37.0 0.004 0.44 3.863 9.6 1379 1.379 66.0 0.65 4 0.0300 55.00 55.0 0.007 0.66 3.872 14.2 2046 2.046 97.9 0.97 5 0.0400 74.00 74.0 0.009 0.87 3.880 19.1 2746 2.746 131.5 1.30 6 0.0500 90.00 90.0 0.011 1.09 3.889 23.1 3333 3.333 159.6 1.57 7 0.0600 105.00 105.0 0.013 1.31 3.897 26.9 3879 3.879 185.8 1.83 8 0.0700 117.00 117.0 0.015 1.53 3.906 30.0 4313 4.313 206.5 2.04 9 0.0800 128.00 128.0 0.017 1.75 3.915 32.7 4708 4.708 225.4 2.22 10 0.0900 138.00 138.0 0.020 1.97 3.923 35.2 5065 5.065 242.5 2.39 11 0.1000 146.00 146.0 0.022 2.18 3.932 37.1 5347 5.347 256.0 2.53 12 0.1200 155.00 155.0 0.026 2.62 3.950 39.2 5651 5.651 270.6 2.67 13 0.1300 162.00 162.0 0.028 2.84 3.959 40.9 5893 5.893 282.2 2.78 _ 14 0.1400 170.00 170.0 0.031 3.06 3.968 42.8 6170 6.170 295.4 2.91 15 0.1500 177.00 177.0 0.033 3.28 3.977 44.5 6409 6.409 306.9 3.03 16 0.1600 182.00 182.0 0.035 3.49 3.986 45.7 6576 6.576 314.9 3.11 17 0.1700 186.00 186.0 0.037 3.71 3.995 46.6 6705 6.705 321.0 3.17 ' 18 0.1800 188.00 188.0 0.039 3.93 4.004 47.0 6762 6.762 323.8 3.19 19 0.1900 191.00 191.0 O.D41 4.15 4.013 47.6 6854 6.854 328.2 3.24 20 0.2000 193.00 193.0 0.044 4.37 4.022 48.0 6910 6.910 330.9 3.26 21 0.2100 194.00 194.0 0.046 4.59 4.031 48.1 6930 6.930 331.8 3.27 22 0.2200 193.00 193.0 0.048 4.80 4.040 47.8 6878 6.878 329.4 3.25 23 0.2300 192.00 192.0 0.050 5.02 4.050 47.4 6827 6.827 326.9 3.23 24 0.2400 190.00 190.0 0.052 5.24 4.059 46.8 6740 6.740 322.7 3.18 25 0.2500 187.00 187.0 0.055 5.46 4.068 46.0 6619 6.619 316.9 3.13 PLATE: B-UC.6a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 1 1 1 I 1 I 1 t I 1 I 1 I t 1 I 4.. ,� -�'--I--L- -1-J--I--L- -'I--I--L-L -J--I--L-I 1 1 1 1 I I 1 I I 1 1 1 1 1 1 1 1 15.0 , 1 I I l 1 1 1 1 1 1 1 I 1 1 CO) -r-1--1--r- -T'1'-I--r- -1--I--r-r- "1--t--r-r- CO) 1 I j-_1 _ _ I_ -_I__1 _ I 1 1 I _ I 1 1 _ O' -1-J--I--�- -;-J--I--I-- -J--I--L-L- -J--I--L-1- 1 (n -T-1--1--r- -T- 1--I--r- -1--1--r-r- " 1--1--r-r- W 10.0 \ I I I I I I I I 1 t I I I I I I 1 1 1 I I 1 1 1 I I 1 I I I I I -T-7--I--r- -Y--I--i--r- -7--I--r-t- --I--1--r-T- W I 1 1 I _ _ I- I__I I _ 1- 1 I I _ i 1 1 1 w -1_J_-1-_1-_ -1_J-_I__L_ _J--1--IL_L_ -J_-1-_L_1_ 0. 5.0 O I I 1 t 1 1 I 1 I 1 I I I 1 I 1 -7--I--r- -Y-1--I--r- -Y--,--r-t- -ti--1--r-t- 1 _ 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 14.9 Dry Density pcf 111.5 / Diameter In 2.22 Height in 4.97 Heigth/Diameter Ratio 2.24 Calculated Saturation % 78.6 Calculated Void Ratio 0.51 Assumed Specific Gravity 2.70 Failure Strain % 4.62 1 Unconfined Compressive Strength ksf 4.09 Undrained Shear Strength ksf 2.05 Strain Rate in/min 0.05 REMARKS: Tested at natural moisture content. Failure Mode : Bulge (Dashed) .� TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: CME TUBE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,22-23 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: LEAN CLAY(CL),light brown PROJECT NO: CDM02007 CLIENT: CDM DATE: 4/18103 LL: PL: PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.7 33 1 12 1 21 1 71 UC Test-Readings Data PROJECT NO: COM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: LEAN CLAY(CL),light brown Dia. : 2.22 in Ht. 4.97 in SAMPLE LOCATION: B-2,22-23It Area: 3.860 in"2 Weight: 645.7 g No. Def. Load Load s s% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings in"2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.860 0.0 0 0.000 0.0 0.00 2 0.0100 15.00 15.0 0.002 0.20 3.868 3.9 558 0.558 26.7 0.26 3 0.0200 24.00 24.0 0.004 0.40 3.876 6.2 892 0.892 42.7 0.42 4 0.0300 35.00 35.0 0.006 0.60 3,884 9.0 1298 1.298 62.1 0.61 5 0.0400 42.00 42.0 0.008 0.80 3.892 10.8 1554 1.554 74.4 0.73 6 0.0500 49.00 49.0 0.010 1.01 3.900 12.6 1809 1.809 86.6 0.85 7 0.0600 56.00 56.0 0.012 1.21 3.907 14.3 2064 2.064 98.8 0.97 8 0.0700 64.00 64.0 0.014 1.41 3.915 16.3 2354 2.354 112.7 1.11 9 0.0800 70.00 70.0 0.016 1.61 3.923 17.8 2569 2.569 123.0 1.21 10 0.0900 76.00 76.0 0.018 1.81 3.931 19.3 2784 2.784 133.3 1.32 11 0.1000 81,00 81.0 0.020 2.01 3.940 20.6 2961 2.961 141.8 1.40 12 0.1100 86.00 86.0 0.022 2.21 3.948 21.8 3137 3.137 150.2 1.48 13 0.1200 90.00 90.0 0.024 2.41 3.956 22.8 3276 3.276 156.9 1.55 14 0.1300 94,00 94.0 0.026 2.61 3.964 23.7 3415 3.415 163.5 1.61 15 0.1400 98.00 98.0 0.028 2.82 3.972 24.7 3553 3.553 170.1 1.68 16 0.1500 102.00 102.0 0.030 3.02 3.980 25.6 3690 3.690 176.7 1.74 17 0.1600 104.00 104.0 0.032 3.22 3.989 26.1 3755 3.755 179.8 1.77 ` 18 0.1700 107.00 107.0 0.034 3.42 3.997 26.8 3855 3.855 184.6 1.82 19 0.1800 109.00 109.0 0.036 3.62 4.005 27.2 3919 3.919 187.6 1.85 20 0.1900 111.00 111.0 0.038 3.82 4.014 27.7 3982 3.982 190.7 1.88 21 0.2000 112.00 112.0 0.040 4.02 4.022 27.8 4010 4.010 192.0 1.89 22 0.2100 113.00 113.0 0.042 4.22 4.031 28.0 4037 4.037 193.3 1.91 23 0.2200 114.00 114.0 0.044 4.42 4.039 28.2 4064 4.064 194.6 1.92 24 0.2300 115.00 115.0 0.046 4.62 4.047 28.4 4091 4.091 195.9 1.93 25 0.2400 115.00 115.0 0.048 4.83 4.056 28.4 4083 4.083 195.5 1.93 26 0.2500 113.00 113.0 0.050 5.03 4.065 27.8 4003 4.003 191.7 1.89 27 0.2600 112.00 112.0 0.052 5.23 4.073 27.5 3959 3.959 189.6 1.87 28 0.2700 112.00 112.0 0.054 5.43 4.082 27.4 3951 3.951 189.2 1.87 29 0.2800 110.00 110.0 0.056 5.63 4.091 26.9 3872 3.872 185.4 1.83 30 0.2900 107.00 107.0 0.058 5.83 4.099 26.1 3759 3.759 180.0 1.78 31 0.3000 105.00 105.0 0.060 6.03 4.108 25.6 3681 3.681 176.2 1.74 i PLATE: B-UC.7a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -•1-J--7--1-- _'+_J__I__I'_ _4--t-_1-_!-- --1-_I-_~-4'_ 1 I I 1 I I I I I 1 I I 1 1 1, 1 -.1 -1-_r_r- -1--1-- -r- y - J- I-_L L- -J--I--L-I- - 15.0 1 I 1 I 1 1 1 I I 1 I I 1 I I 1 (f1 -r--t--I--r- -T-1--I--r- -�--1--r-r- -1--I--r-r- I I I -� - - --1--L- - - --�-�- -J- --F W '�'�"1' 11 I I I I I I I t 1 I 1 IY -L-J--I--I-- -J-A--I--I-- -4--I--4'-4-- --1--1--1--L- I I 1 1 I I I I I 1 I I I 1 I I co -T-1--1-4- 'T--1--I--r- -1--I--r-r- -'1--I--r-T- W 10.0 > -1_J_-!__L- -J_J--I-_L.- -J--1--L_L_ ..J__I_ I I I I 1 1 I I 1 1 I 1 I 1 1 1 -T--1_"1__I-'_ _T-'1_-1--►'- _1_-1_-r-t_ .'-1--1_-r-t_ W 1 1 1 1 -�-�--1--�- -�- --1--r- _�__I--�-� 'I'I"I"1 1 1 1 I 1 I I 1 I 1 I 1 _L_J_-!_-L_ _J_J__ _-I__L_L_ _J__I_-L_L_ L � 1 I I I 1 I 1 I I 1 1 I 5.0 I I I I 1 i I 1 1 I I I I I I O -T- -,--;- -;-1--,--r- -i--,--i-r- --I--,--r-T- V 1 I I I 1 1 1 1 1 1 1 I I 1 1 -y--i--Y- -'t-y--1--Y- --1--I--Y-t- -'i--i--Y-t- I 0.0 T 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 16.5 Dry Density pcf 112.2 Diameter in 2.26 Height in 4.47 Heigth/Diameter Ratio 1.98 - Calculated Saturation % 88.8 Calculated Void Ratio 0.50 I Assumed Specific Gravity 2.70 T % Failure Strain % 9.39 1 Unconfined Compressive Strength ksf 5.96 Undrained Shear Strength ksf 2.98 Strain Rate in/min 0.05 REMARKS: Tested at natural moisture content. Failure Mode : Bulge (Dashed) } TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: CME TUBE PROJECT. Trinity River Siphon SAMPLE LOCATION: B-2,27-28 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: LEAN CLAY(CL),light brown PROJECT NO: CDM02007 CLIENT: CDM DATE: 4118/03 LL: PL: PI : Percent<200 Sieve: GREGORY GEOTECHNICAL PLATE: B-UC.8 35 12 23 74 + UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: LEAN CLAY(CL),light brown Dia. : 2.26 In Ht. : 4.47 in SAMPLE LOCATION: B-2,27-28 ft Area: 4.026 inA2 Weight: 617.89 No. Def. Load Load s E% Corr. UC UC UC UC UC/Pa (In) Reading Qbs) in/in Area Stress Stress Stress Stress Normalized Data Readings in"2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 4.028 0.0 0 0.000 0.0 0.00 2 0.0100 9.00 9.0 0.002 0.22 4.035 2.2 321 0.321 15.4 0.15 3 0.0200 21.00 21.0 0.004 0.45 4.044 5.2 748 0.748 35.8 0.35 4 0.0300 37.00 37.0 0.007 0.67 4.053 9.1 1315 1.315 62.9 0.62 5 0.0400 56.00 56.0 0.009 0.89 4.062 13.8 1985 1.985 95.1 0.94 6 0.0500 73.00 73.0 0.011 1.12 4.071 17.9 2582 2.582 123.6 1.22 7 0.0600 86.00 86.0 0.013 1.34 4.080 21.1 3035 3.035 145.3 1.43 8 0.0700 97.00 97.0 0.016 1.56 4.090 23.7 3415 3.415 163.5 1.61 9 0.0800 105.00 105.0 0.018 1.79 4.099 25.6 3689 3.689 176.6 1.74 10 0.0900 111.00 111.0 0.020 2.01 4.108 27.0 3891 3.891 186.3 1.84 11 0.1000 117.00 117.0 0.022 2.24 4.118 28.4 4092 4.092 195.9 1.93 12 0.1100 122.00 122.0 0.025 2.46 4.127 29.6 4257 4.257 203.8 2.01 13 0.1200 127.00 127.0 0.027 2.68 4.137 30.7 4421 4.421 211.7 2.09 14 0.1300 130.00 130.0 0.029 2.91 4.146 31.4 4515 4.515 216.2 2.13 15 0.1400 133.00 133.0 0.031 3.13 4.156 32.0 4609 4.609 220.7 2.18 16 0.1500 137.00 137.0 0.034 3.35 4.165 32.9 4736 4.736 226.8 2.24 17 0.1600 139.00 139.0 0.036 3.58 4,175 33.3 4794 4,794 229.6 2.26 -- 18 0.1700 142.00 142.0 0.038 3.80 4.185 33.9 4886 4.886 234.0 2.31 19 0.1800 144.00 144.0 0.040 4.02 4.195 34.3 49M 4.944 236.7 2.34 20 0.1900 147.00 147.0 0.042 4.25 4.204 35.0 5035 5.035 241.1 2.38 21 0.2000 149.00 149.0 0.045 4.47 4.214 35.4 5091 5.091 243.8 2.41 22 0.2100 152.00 152.0 0.047 4.69 4.224 36.0 5182 5.182 248.1 2.45 23 0.2200 154.00 154.0 0.049 4.92 4.234 36.4 5238 5.238 250.8 2.47 24 0.2300 156.00 156.0 0.051 5.14 4.244 36.8 5293 5.293 253.4 2.60 25 0.2400 159.00 159.0 0.054 5.37 4.254 37.4 5382 5.382 257.7 2.54 26 0.2500 159.00 159.0 0.056 5.59 4.264 37.3 5370 5.370 257.1 2.64 27 0.2600 162.00 162.0 0.058 5.81 4.274 37.9 5458 5.458 261.3 2.58 28 0.2700 164.00 164.0 0.060 6.04 4.284 38.3 5512 5.512 263.9 2.60 29 0.2800 166.00 166.0 0.063 6.26 4.295 38.7 5566 5.566 266.5 2.63 30 0.2900 168.00 168.0 0.065 6.48 4,305 39.0 5620 5.620 269.1 2.65 31 0.3000 170.00 170.0 0.067 6.71 4.315 39.4 5673 5.673 271.6 2.68 32 0.3100 172.00 172.0 0.069 6.93 4.325 39.8 5726 5.726 274.2 2.71 33 0.3200 174.00 174.0 0.072 7.15 4.336 40.1 5779 5.779 276.7 2.73 34 0.3300 175.00 175.0 0.074 7.38 4.346 40.3 5798 5.798 277.6 2.74 35 0.3400 177.00 177.0 0.076 7.60 4.357 40.6 5850 5.850 280.1 2.76 36 0.3500 177.00 177.0 0.078 7.82 4.367 40.5 5836 5.836 279.4 2.76 37 0.3600 180.00 180.0 0.080 8.05 4.378 41.1 5920 5.920 283.5 2.80 38 0.3800 181.00 181.0 0.085 8.50 4.399 41.1 5924 5.924 283.7 2.80 39 0.4000 183.00 183.0 0.089 8.94 4.421 41.4 5961 5.961 285.4 2.82 40 0.4200 184.00 184.0 0.094 9.39 4.443 41.4 5964 5.964 285.6 2.82 41 0.4800 186.00 186.0 0.107 10.73 4.510 41.2 5939 5.939 284.4 2.81 42 0.5000 185.00 185.0 0.112 11.18 4.532 40.8 5878 5.878 281.4 2.78 43 0.5200 183.00 183.0 0.116 11.63 4.555 40.2 5785 5.785 277.0 2.73 1� 44 0.5300 182.00 182.0 0.118 11.85 4.567 39.9 5739 5.739 274.8 2.71 45 0.5400 181.00 181.0 0.121 12.07 4.578 39.5 5693 5.693 272.6 2.69 46 0.5500 180.00 180.0 0.123 12.30 4.590 39.2 5647 5.647 270.4 2.67 47 0.5600 179.00 179.0 0.125 12.52 4.602 38.9 5601 5.601 268.2 2.65 48 0.5700 178.00 178.0 0.127 12.74 4.614 38.6 5556 5.556 266.0 2.62 49 0.5800 176.00 176.0 0.130 12.97 4.625 38.1 5479 5.479 262.4 2.59 GREGORYGEOTECHN/CAL irs�nnza_')'77219k.4- PLATE: B-UC.8a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 I 1 1 I 1 1 1 1 I 1 I I 1 1 I I I I I I I 1 1 1 I I 1 1 I I I I IF -T-1--r-r- 'T-'1--1--r- -1--I--r-r- "'1--i--r-T- Y -1_J--1--I-- -1-J--I--L- -J--1--1--L- -J--I--L-1- I 1 1 I 1 1 ( 1 I I I 1 1 1 1 I 15.0 1 -T- --I--r"T--1--I--r' -1-1'-r-r- --1--1--r-T- N - -�--I-- -- - -J- --L- W 1 1 i 1 1 1 1 I - t- I' (n -T-'1--I--r- -T-"1--I--r- —1--1--r-r- --1--I--f_T- w 10.0 _1-J__I__L- -1_J--I--L_ _J-_I--L-JL_ 35 I 1 1 I I I I 1 I I I I I 1 I 1 N -t--1--I--r- --r--1--1--r- -7--1--r-r- -�--1--r-t- _�_�_�_ 1 _ 1_ I__i_ 1 _ I_ I I _1 _ _ I I 1 _ 1 _ 1 1 1 'i ? i 1 'i' i 'i''i i i''i'i i -1_J--1--L- _1_J--1--t- _-1 -1--L-L- _J -_I--L-L- FZ 1 I I I 1 I I 1 I 1 1 I I 1 1 I 5.0 O I I 1 1 1 1 1 I 1 1 1 1 1 I I 1 V -1-J--1 - ---- - - ---- - - re.J--I--L-1- 1 1 1 1 1 1 I 1 I 1 1 1 I I y--1--r- -Y-'1--1--r- -y--t--r-r- I 1 1 I 1 1 1 i I 1 1 I I t 1 1 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 18.6 Dry Density pcf 110.3 Diameter in 2.35 Height in 4.49 Heigth/Diameter Ratio 1.91 ` Calculated Saturation % 94.8 Calculated Void Ratio 0.53 Assumed Specific Gravity 2.70 Failure Strain % 10.26 1 t Unconfined Compressive Strength ksf 3.30 Undrained Shear Strength ksf 1.65 Strain Rate in/min 0.05 REMARKS: Tested at natural moisture content. Failure Mode : Bulge (Dashed) TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: CME TUBE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,33-34 ft LOCATION: Fort Worth,TX i SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL),brown to reddish PROJECT NO: CDM02007 brown CLIENT: CDM DATE: 4118103 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.9 nll 30 10 20 1 65 UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL),brown to reddish brown Dia. : 2.35 In Ht. : 4.49 In SAMPLE LOCATION: B-2,33-34 ft Area: 4.345 in"2 Weight: 60.7 g No. Def. Load Load 8 E% Corr. UC UC UC UC UC/Pa (in) Reading Qbs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 4.345 0.0 0 0.000 0.0 0.00 2 0.0100 15.00 15.0 0.002 0.22 4.354 3.4 496 0.496 23.8 0.23 3 0.0200 26.00 26.0 0.004 0.45 4.364 6.0 858 0.858 41.1 0.41 4 0.0300 36.00 36.0 0.007 0.67 4.374 8.2 1185 1.185 56.7 0.56 5 0.0400 48.00 48.0 0.009 0.69 4.384 10.9 1577 1.577 75.5 0.74 6 0.0500 56.00 56.0 0.011 1.11 4.394 12.7 1835 1.835 87.9 0.87 7 0.0600 63.00 63.0 0.013 1.34 4.404 14.3 2060 2.060 98.6 0.97 8 0.0700 69.00 69.0 0.016 1.56 4.414 15.6 2251 2.251 107.8 1.06 9 0.0800 74.00 74.0 0.018 1.78 4.424 161 2409 2.409 115.3 1.14 10 0.0900 77.00 77.0 0.020 2.01 4.434 17.4 2501 2.501 1191 1.18 11 0.1000 80.00 80.0 0.022 2.23 4.444 18.0 2592 2.592 124.1 1.22 12 0.1200 83.00 83.0 0.027 2.68 4.464 18.6 2677 2.677 128.2 1.26 13 0.1300 85.00 85.0 0.029 2.90 4.474 19.0 2736 2.736 131.0 1.29 14 0.1400 88.00 88.0 0.031 3.12 4.485 19.6 2826 2.826 135.3 1.33 15 0.1500 90.00 90.0 0.033 3.34 4.495 20.0 2883 2.883 138A 1.36 16 0.1600 91.00 91.0 0.036 3.57 4.505 20.2 2908 2.908 139.3 1.37 17 0.1700 94.00 94.0 0.038 3.79 4.516 20.8 2997 2.997 143.5 1.42 18 0.1800 95.00 95.0 0.040 4.01 4.526 21.0 3022 3.022 144.7 1.43 19 0.1900 95.00 95.0 0.042 4.24 4.537 20.9 3015 3.015 144.4 1.42 20 0.2000 96.00 96.0 0.045 4.46 4.548 21.1 3040 3.040 145.6 1.44 21 0.2100 97.00 97.0 0.047 4.68 4.558 21.3 3064 3.064 146.7 1.45 22 0.2300 98.00 98.0 0.051 5.13 4.580 21.4 3081 3.081 147.5 1.46 23 0.2500 100.00 100.0 0.056 5.57 4.601 21.7 3130 3.130 149.9 1.48 24 0.2600 101.00 101.0 0.058 5.80 4.612 21.9 3153 3.153 151.0 1.49 25 0.2700 103.00 103.0 0.060 6.02 4.623 22.3 3208 3.208 153.6 1.52 26 0.2900 102.00 102.0 0.065 6.47 4.645 22.0 3162 3.162 151.4 1.49 27 0.3200 104.00 104.0 0.071 7.13 4.679 22.2 3201 3.201 153.3 1.51 28 0.3600 106.00 106.0 0.080 8.03 4.724 22.4 3231 3.231 154.7 1.53 29 0.4000 108.00 108.0 0.089 8.92 4.770 22.6 3260 3.260 156.1 1.54 30 0.4300 110.00 110.0 0.096 9.59 4.805 22.9 3296 3.296 157.8 1.56 31 0.4600 111.00 111.0 0.103 10.26 4.841 22.9 3302 3.302 158.1 1.56 32 0.5200 112.00 112.0 0.116 11.59 4.915 22.8 3282 3.282 157.1 1.55 33 0.5400 113.00 113.0 0.120 12.04 4.939 22.9 3294 3.294 157.7 1.56 34 0.5800 114.00 114.0 0.129 12.93 4.990 22.8 3290 3.290 157.5 1.55 35 0.6100 115.00 115.0 0.136 13.60 5.029 22.9 3293 3.293 157.7 1.56 36 0.6300 114.00 114.0 0.140 14.05 5.055 22.6 3248 3.248 155.5 1.53 37 0.6600 113.00 113.0 0.147 14.72 5.094 22.2 3194 3.194 152.9 1.51 38 0.6900 112.00 112.0 0.154 15.38 5.135 21.8 3141 3.141 150.4 1.48 01 ATG• 01 IY` Q. UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 160.0 -r- r-�--i-- -r-r-4-1----r-r-r-�- --r-r-r-r- -T--f-1--I" 1-1----r-r-T--t- --�--r'r-T- -r-t-ti--i-- -r-r--r-�----r-r-t--r- --r-r-r-t- -t-t-1--I-- -r-t-t-y----r-h-t-t- --�--F-r'-t- 4- -+ i-1--I-- -h-t-t-1----F-h-t-i- --I--F-l--+- 1 120.0 _ _1-J_-I__ - y _1_J__I-_ -L-1-1-J----L_L_1_1_ __1__L_L_1_ _ _1_J__1__ _L-1-.1 J----L_L_1_1_ --I_-L-L_1_ W _I L_1_J_J____L_L_1_1_ __t__L_L_1_ -1-J-�-- -L-1-1-J----L-L-1-1- ----�--L-1- -1-1-J--�-- -L_1_1-1------L-1-�- ------L-1- CO) 1- -J--�-- -1-1- -J----�--L_ W 80.0 --------- F T i ------------- 5 T-i-i--,-- -r-T-j-�----i-r-T-1- --,--j-r-T- T-7-�--,----r-T-7-j----,--r-T-1- --,--,--r-T- T-7-1--,-- -r-T-7-1----r•-r-T-1- --,--r-r-T- r-�-1--1-- -r-T-7-1----r-r-T-7- --,--r-r-T- a r- -1--i-- -r-r- -1----r-r-T-�- --r-r-r-r- 40.0 0 -r-t-ti--i-- -r-r-t-ti----r-r-t-t- --�--r-r-t- -+-t- +--i-- -r-+-t- +----r-r-+- +- --r-r-r-+- 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 13.2 Dry Density pcf 126.0 Diameter in 1.99 Height in 4.47 Heigth/Diameter Ratio 2.24 Calculated Saturation % 81.7 Calculated Void Ratio 0.49 Assumed Specific Gravity 3.00 Failure Strain % 1.57 Unconfined Compressive Strength ksf 136.90 Undrained Shear Strength ksf 68.45 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,56-57 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE,gray PROJECT NO: CDM02007 CLIENT. CDM DATE: 4/23/03 LL: PL: PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.10 NA NA NA NA UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon _ SAMPLE DESCRIPTION: SHALE,gray Dia. : 1.99 in Ht. : 4.47 in SAMPLE LOCATION: B-2,56-57 It Area: 3.107 in"2 Weight: 519.6 g No. Def. Load Load e e% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.107 0.0 0 0.000 0.0 0.00 2 0.0050 76.00 76.0 0.001 0.11 3.111 24.4 3518 3.518 168.5 1.66 3 0.0100 312.00 312.0 0.002 0.22 3.114 100.2 14427 14.427 690.8 6.82 4 0.0150 733.00 733.0 0.003 0.34 3.118 235.1 33857 33.857 1621.1 15.99 ' 5 0.0200 1032.00 1032.0 0.004 0.45 3.121 330.7 47614 47.614 2279.8 22.49 6 0.0250 1447.00 1447.0 0.006 0.56 3.125 463.1 66686 66.686 3193.0 31.50 7 0.0300 1688.00 1688.0 0.007 0.67 3.128 539.6 77705 77.705 3720J 36.71 8 0.0350 1887.00 1887.0 0.008 0.78 3.132 602.6 86768 86.768 4154.6 40.99 9 0.0400 2056.00 2056.0 0.009 0.90 3.135 655.8 94432 94.432 4521.6 44.61 10 0.0450 2227.00 2227.0 0.010 1.01 3.139 709.5 102170 102.170 4892.1 48.27 11 0.0500 2394.00 2394.0 0.011 1.12 3.142 761.9 109708 109,708 5253.0 51.83 12 0.0550 2566.00 2566.0 0.012 1.23 3.146 815.7 117456 117.456 5624.0 55.49 13 0.0600 2715.00 2715.0 0.013 1.34 3.149 862.1 124136 124.136 5943.9 58.64 _ 14 0.0650 2874.00 2874.0 0.015 1.46 3.153 911.5 131257 131.257 6284.8 62.01 15 0.0700 3001.00 3001.0 0.016 1.57 3.157 950.7 136901 136.901 6555.1 64.67 16 0.0750 2990.00 2990.0 0.017 1.68 3.160 946.1 136244 136.244 6523.6 64.36 PLATE: B-UC.10a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 40.0 ---------- ------ ---------- -- -5-- --L _ _ -J--I--�--- 1__L_ J__I__L_L_ _J__I-_L_1_ -4--4--1--1-- -4-4--1--1-- -4--1- 4'- -4--1--I--}- -t--1--I--r- -i-i--I--t- -Y--1--r-t- -i--I--t-t- V.. -T-'1_- _r_ _Y-1-_I_-r- _1_- f I___T_ _1__1__r-T_ Y - :'- I_{_--C: - -D:_I:-E- -3-_,::C-r^ -J--1--r-T- _1_J_J__L_ 1 30.0 t--1--1--r- -i-1--I--r- --1--t--r-+- -1--1--r-t- T-'1--I--r- -T-1--1--r- -1--I--r-r- -1--1 - N T-_I --r-T _-_,-_-_�_-_ -_?-_,-_I-_-_�_-_ -_�-_I-_-�_-T-_ -�-_,--r_T-_ _J__I-_L_L- _J__I__L_1_ L_J._ -_1--1-_1'-T- W 20.0H1_J_J__L_ > 1_J__I__L_ -Y-_7-_-CL _1-_-_r- 10.0 _ O -T--,-_�-_-r-_ -_�- --_I--r- - --1--r-r- -_-1--,--r_-T- V -t-1--I--r- -Y-y--I--r- -y--i--r-t^ -y--I--t-t- -T-'1--I--r- --t-1--I--r- --I--t--r-T" -'l--I--r-T- _L _L --------- ------- - ----- -- 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 14.6 Dry Density pcf 121.2 Diameter in 1.97 Height in 4.79 Heigth/Diameter Ratio 2.44 - Calculated Saturation % 80.4 Calculated Void Ratio 0.54 Assumed Specific Gravity 3.00 Failure Strain % 0.94 Unconfined Compressive Strength ksf 33.05 Undrained Shear Strength ksf 16.52 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,62-63 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE,gray PROJECT NO: CDMO2007 CLIENT: CDM DATE: 4/23/03 LL: PL: I PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.11 NA NA NA NA UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE,gray Dia. : 1.97 in Ht. : 4.79 In SAMPLE LOCATION: B-2,62-63 ft Area: 3.039 InA2 Weight: 531.1 g No. Def. Load Load e e% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized _ Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.039 0.0 0 0.000 0.0 0.00 2 0.0050 94.00 94.0 0.001 0.10 3.042 30.9 4450 4.450 213.1 2.10 3 0.0100 206.00 206.0 0.002 0.21 3.045 67.6 9741 9.741 466.4 4.60 4 0.0150 315.00 315.0 0.003 0.31 3.048 103.3 14880 14.880 712.5 7.03 5 0.0200 429.00 429.0 0.004 0.42 3.052 140.6 20244 20.244 969.3 9.56 6 0.0250 526.00 526.0 0.005 0.52 3.055 172.2 24796 24.796 1187.3 11.71 7 0.0300 601.00 601.0 0.006 0.63 3.058 196.5 28302 28.302 1355.1 13.37 8 0.0350 649.00 649.0 0.007 0.73 3.061 212.0 30530 30.530 1461.8 14.42 9 0.0400 685.00 685.0 0.008 0.83 3.064 223.5 32189 32.189 1541.3 15.21 10 0.0450 704.00 704.0 0.009 0.94 3.068 229.5 33048 33.048 1582.4 15.61 11 0.0500 703.00 703.0 0.010 1.04 3.071 228.9 32966 32.966 1578.5 15.57 12 0.0550 689.00 689.0 0.011 1.15 3.074 224.1 32275 32.275 1545.4 15.25 13 0.0600 647.00 647.0 0.013 1.25 3.077 210.2 30276 30.276 1449.7 14.30 GREGORV(SFn Tic CFINICAI it nnnn-y 0 n co r -I- PLATE: B-UC.11 a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 80.0 i 1 I I I I I 1 I 1 I I I 1 I 1 -r--I--1--r- -�--I--1--r- -�--I--r-r- --I--I--r-r- 1 1 I 1 I 1 1 I I 1 I I I I I I I 1 1 i 1 i I I I I I I 1 I 1 I 60.0Cn Cn 1 I I I 1 I I i I I I I 1 I I 1 W i t 1 1 I I t 1 I I I 1 I I I I N W 40.0 i 1 I I I I 1 I I 1 I 1 i I I 1 > I I I I I 1 I 1 1 1 I I I I I 1 N I 1 I I I I I I I I I I I I I 1 I 1 1 I I i 1 I I I I I I I I I 0. 1 1 I 1 1 I I I I I I I I 1 I I 20.0 O I I I I 1 I I 1 1 I I 1 1 I I 1 V I 1 1 i I 1 I I 1 I I I I 1 1 1 1 I I I I I I i I 1 I I I 1 I 1 I 1 I 1 I I I I 1 1 1 1 1 1 I I 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 14.2 Dry Density pcf 123.1 Diameter in 1.96 Height in 4.57 Heigth/Diameter Ratio 2.33 Calculated Saturation % 81.8 Calculated Void Ratio 0.52 Assumed Specific Gravity 3.00 Failure Strain % 1.71 Unconfined Compressive Strength ksf 52.91 Undrained Shear Strength ksf 26.45 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,63-6411 LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE,gray PROJECT NO: CDMOM07 CLIENT: CDM DATE: 4/23/03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.12 NA NA NA NA UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE,gray Dia. : 1.96 in Ht. 4.57 in SAMPLE LOCATION: B-2,63-64ft Area: 3.020 inA2 Weight: 509.1 g No. Def. Load Load e e% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.020 0.0 0 0.000 0.0 0.00 2 0.0050 75.00 75.0 0.001 0.11 3.024 24.8 3572 3.572 171.0 1.69 3 0.0100 241.00 241.0 0.002 0.22 3.027 79.6 11465 11.465 549.0 5.42 4 0.0150 458.00 458.0 0.003 0.33 3.030 151.1 21765 21.765 1042.1 10.28 5 0.0200 594.00 594.0 0.004 0.44 3.034 195.8 28197 28.197 1350.1 13.32 6 0.0250 697.00 697.0 0.005 0.55 3.037 229.5 33050 33.050 1582.5 15.61 7 0.0300 774.00 774.0 0.007 0.66 3.040 254.6 36660 36.660 1755.4 17.32 _ 8 0.0350 828.00 828.0 0.008 0.77 3.044 272.0 39175 39.175 1875.8 18.51 9 0.0400 881.00 881.0 0.009 0.88 3.047 289.1 41636 41.636 1993.6 19.67 10 0.0450 926.00 926.0 0.010 0.99 3.050 303.6 43715 43.715 2093.1 20.65 11 0.0500 971.00 971.0 0.011 1.09 3.054 318.0 45788 45.788 2192.4 21.63 12 0.0550 1009.00 1009.0 0.012 1.20 3.057 330.1 47528 47.528 2275.7 22.45 13 0.0600 1044.00 1044.0 0.013 1.31 3.060 341.1 49122 49.122 2352.0 23.21 14 0.0650 1079.00 1079.0 0.014 1.42 3.064 352.2 50712 50.712 2428.2 23.96 ' 15 0.0700 1110.00 1110.0 0.015 1.53 3.067 361.9 52111 52.111 2495.2 24.62 16 0.0750 1125.00 1125.0 0.016 1.64 3.071 366.4 52757 52.757 2526.1 24.92 17 0.0780 1129.00 1129.0 0.017 1.71 3.073 367.4 52909 52.909 2533.4 24.99 18 0.0800 1127.00 1127.0 0.018 1.75 3.074 366.6 52792 52.792 2527.8 24.94 PLATE: B-UC.12a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 40.0 -1-J--1--1-- -1-J--1--�- -1 L- -J--1--�-� - 1 1 I I I I I 1 I I I I 1 I 1 I -+- --1--F- -'�--1--1--1'- -�--1--F-4-- --1--1--L-+- I � -T-7--I--r- -7_1_-I--r- _-F_-I__r_r_ _1__I__r_T_ Y -� -J- --1-- --1 i--I--L- -1- --t-L -J--1--L-1- I I I I I I 1 1 I 1 1 1 t I I I 1 30.0 1 1 I I 1 I I 1 I 1 I I I 1 1 I W t 1 1 1 -J_-I--L-+- I I I 1 I I 1 I I 1 1 I I 1 I I r--r--I--r- - r- --1--r- --1--I--r-r- - --I--r-r- W 20.0 1-J--'1--L- -1-'1--i--6'- -J--1--L-L- -'1--1--6'-1- I I 1 1 I I I I 1 1 1 I I I I I � t-7--I--r- -Y-7--1--r- -7--I--r-r- -�--I--r-r- t I I-T I 1 1 I I I 1 I 1 iI 1 II -1 - _J_J_-I-_1- _J--1__L_1._ _J_-1-_L_L_ it I 1 I 1 I I 1 I I I I 1 1 I I 1 10.0 O 1 I 1 1 I I I 1 1 1 1 I 1 1 1 I V I 1 I I 1 1 1 I 1 1 I I 1 I 1 1 -t-y--I--r- -t-7--1--r- -y--I--r-t- -7--I--r-t- I I I I I 1 I I 1 1 I I 1 1 1 1 _ 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 13.6 Dry Density pcf 122.4 Diameter in 1.98 Height in 4.50 Heigth/Diameter Ratio 2.28 Calculated Saturation % 76.7 Calculated Void Ratio 0.53 Assumed Specific Gravity 3.00 Failure Strain % 0.89 Unconfined Compressive Strength ksf 28.50 Undrained Shear Strength ksf 14.25 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,66-67ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE,gray PROJECT NO: CDMO2007 CLIENT: CDM DATE: 4/23/03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.13 NA NA NA NA UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE,gray Dia. : 1.98 in Ht. : 4.50 in SAMPLE LOCATION: B-2,66-67ft Area: 3.070 In"2 Weight: 504.0 g No. Def. Load Load E 6% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings in"2 psi Of ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.070 0.0 0 0.000 0.0 0.00 2 0.0050 75.00 75.0 0.001 0.11 3.073 24.4 3514 3.514 168.3 1.66 3 0.0100 172.00 172.0 0.002 0.22 3.077 55.9 8050 8.050 385.5 3.80 4 0.0150 287.00 287.0 0.003 0.33 3.080 93.2 13418 13.418 642.5 6.34 -- 5 0.0200 371.00 371.0 0.004 0.44 3.083 120.3 17326 17.326 829.6 8.19 6 0.0250 452.00 452.0 0.006 0.56 3.087 146.4 21085 21.085 1009.6 9.96 7 0.0300 500.00 500.0 0.007 0.67 3.090 161.8 23298 23.298 1115.6 11.01 8 0.0350 559.00 559.0 0.008 0.78 3.094 180.7 26018 26.018 1245.8 12.29 9 0.0400 613.00 613.0 0.009 0.89 3.097 197.9 28500 28.500 1364.6 13.46 10 0.0450 601.00 601.0 0.010 1.00 3.101 193.8 27911 27.911 1336.4 13.19 PLATE: B-UC.13a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 120.0 -'�--+-_1-- -1--1-4--1----1--1--+-4- --1--1--�-{- I I I I 1 I I I I I 1 1 I I I �-;--,-- -,. - - ----,--,-- -�- --,--,--i-- - - -t--1--1-- -r-r-t- +----r-r-+-�- --1--r-r-t- � -L-1-J--�-- -L-L-1-J----�--1--L-1- --I--�--L-1- Y 1 I I I I 1 I 1 I 1 1 I I I I I T-1-1--I-- -r-T-1--,----r-r-T--T --,--r-r-T- 1 90.0 1 - - I I I I -I;-;I- I I -;I 1 1 1 1 1 to ;-;-;- ,-- -, ;----I - ,- ; -;- --,--;-,--;- fA r-t--1--1-- -r-r-�--+----r-r-+-t- --t--r-r-t- W 1-1-J--I-- -L-L-J-J----L-L-L-J - --1--�--�-L- I I t I I I I 1 1 1 I 1 I I 1 I I;n -1--4-4--1-- -4-1--4--1----1--1--+-4- --1--1--I--+- W 60.0 i i i i i i > -r--r----I-- -r-r-t--+----r-r-t- r- --1--r-r-t- (n --t--�--L-L- V) I 1 1 I 1 I I I-- 1 I I 1 I I I I -T-1-1--,----r-T-1-1 --r—r-T-1- --,--r--r-T- W Uj -+-4-A--1----1--}-�--1----�-1-_{_'1- --1--1--1--{- Y. 1_ I I I _ I_ I I I 1 Q -L-�-J--I-- -I--1'-�-J----L-1'-L-1- --1--L-L-L- i I 1 1 I 1 1 I 1 I I I I t I I -4- 4-A--1-- -I-}-4--1----1--1'-+-4- --1--1--�-+- 1 1 i �----�-L 1-j----1--L-1-1- --1--I--L-I- ' I" I 1 I I I I I I I I I I I -r I--r-t-I- --I--r-r-t- 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 14.7 Dry Density cf 127.6 Diameter in 1.98 T Height in 4.48 Heigth/Diameter Ratio 2.26 rt Calculated Saturation % 94.3 Calculated Void Ratio 0.47 Assumed Specific Gravity 3.00 Failure Strain % 1.07 Unconfined Compressive Strength ksf 116.99 Undrained Shear Strength ksf 58.49 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-2,69-70It LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE, light gray PROJECT NO: CDMO2007 CLIENT: CDM DATE: 4123/03 LL: PL: PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.14 NA NA NA I NA UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE, light gray Die. : 1.98 in Ht. . 4.48 in SAMPLE LOCATION: B-2,69-70 ft Area: 3.076 in"2 Weight: 528.9 g No. Def. Load Load s s% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings in^2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.076 0.0 0 0.000 0.0 0.00 2 0.0050 54.00 54.0 0.001 0.11 3.079 17.5 2525 2.525 120.9 1.19 3 0.0100 735.00 735.0 0.002 0.22 3.083 238.4 34332 34.332 1643.9 16.22 4 0.0150 1277.00 1277.0 0.003 0.34 3.086 413.8 59582 59.582 2852.9 28.15 5 0.0200 1562.00 1562.0 0.004 0.45 3.090 505.5 72798 72.798 3485.7 34.39 6 0.0250 1758.00 1758.0 0.006 0.56 3.093 568.3 81840 81.840 3918.7 38.66 7 0.0300 1972.00 1972.0 0.007 0.67 3.097 636.8 91699 91.699 4390.7 43.32 = 8 0.0350 2124.00 2124.0 0.008 0.78 3.100 685.1 98656 98.656 4723.9 46.61 9 0.0400 2287.00 2287.0 0.009 0.89 3.104 736.9 106108 106.108 5080.7 50.13 10 0.0450 2432.00 2432.0 0.010 1.01 3.107 782.7 112708 112.708 5396.7 53.24 = 11 0.0480 2526.00 2526.0 0.011 1.07 3.109 812.4 116985 116.985 5601.5 55.27 12 0.0500 2493.00 2493.0 0.011 1.12 3.111 801.4 115405 115.405 5525.8 54.52 -------------- - -- - ----------- PLATE: B-UC.14a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 I I I 1 1 1 I I I 1 1 I 1 I I I tF -T- --1--r- -T-1--I--r- -1--I'-r'r- -1--1--r-T- 1 15.0 1 I I 1 1 1 I 1 1 1 11 4- I I I Cl) I-T �- --r- 'T-1--1--r -�--1--r-r- -4--1--r-r- _ -- 1 -------- ---------- ------ - - 1 1 I I 1 1 I 1 1 I 1 1 I I 1 -L J--a--I-- -J-J--I--4'- -J--1--I--L- -J--I--L-a-- I t 1 I I I I I I I 1 I I I I 1 N -r- --t--r- -r- --I--r- - --1--r-r- --t--I--r-r- W 10.0 - -"1--I--I-- -�-J--I--1'- -J--I--1--!'- -J--I--L_1_ N 1 I 1 I I I I I I I I I I I I N - --l--1--r- -7--I--1--r- -ti--I--r-r- --I--1--r-r- I _J_J-_I_-L_ _J-_I--L_L.. _J--I__L_1_ IL I I I 1 1 1 I I I I I I I I 1 1 2 5.0 I I I I I 1 1 I I I I I I I 1 1 O T-- --,--�- -z-;--,--r- -- --,--,--r- -;--,--�-T- V _J_-1--L-1- 1 1 I 1 I I 1 I 1 I 1 I 1 1 1 I -t--1-1--r- -'f-ti--I--r- -y-1--r-r- -ti--I--r-r- I I 1 1 1 ! 1 1 ! ! 1 1 1 1 1 1 0.0 Y 0 5 10 15 20 AXIAL STRAIN -% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 13.3 Dry Density pcf 116.3 Diameter in 2.08 Height in 3.90 Heigth/Diameter Ratio 1.87 Calculated Saturation % 80.0 Calculated Void Ratio 0.45 Assumed Specific Gravity 2.70 Failure Strain % 2.05 Unconfined Compressive Strength ksf 17.41 Undrained Shear Strength ksf 8.70 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. -- Failure Mode : Wedge TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: CME TUBE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-3,8-9 It LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL),light brown PROJECT NO: CDM02007 CLIENT: CDM DATE: 4/23103 LL: PL: PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.15 29 14 15 1 74 UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL),light brown Dia. : 2.08 in Ht. 3.90 in SAMPLE LOCATION: B-3,8-9 ft Area: 3.411 inA2 Weight: 459.9 g _ No. Def. Load Load e e% Corr. UC UC UC UC UC/Pa (in) Reading (ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.411 0.0 0 0.000 0.0 0.00 2 0.0100 44.00 44.0 0.003 0.26 3.420 12.9 1853 1.853 88.7 0.88 3 0.0200 89.00 89.0 0.005 0.51 3.429 26.0 3738 3.738 179.0 1.77 4 0.0300 153.00 153.0 0.008 0.77 3.437 44.5 6409 6.409 306.9 3.03 5 0.0400 212.00 212.0 0.010 1.03 3.446 61.5 8858 8.858 424.1 4.18 6 0.0500 282.00 282.0 0.013 1.28 3.455 81.6 11752 11.752 562.7 5.55 7 0.0600 347.00 347.0 0.015 1.54 3.464 100.2 14423 14.423 690.6 6.81 8 0.0700 398.00 398.0 0.018 1.80 3.473 114.6 16500 16.500 790.1 7.79 9 0.0800 421.00 421.0 0.021 2.05 3.483 120.9 17408 17.408 833.5 8.22 10 0.0900 389.00 389.0 0.023 2.31 3.492 111.4 16043 16.043 768.2 7.58 11 0.1000 365.00 365.0 0.026 2.57 3.501 104.3 15013 15.013 718.9 7.09 12 0.1100 355.00 355.0 0.028 2.82 3.510 101.1 14564 14.564 697.3 6.88 13 0.1200 332.00 332.0 0.031 3.08 3.519 94.3 13584 13.584 650.4 6.42 PLATE R-UC_15a -- UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 1 I 1 1 1 I 1 I I I I I 1 I I I I I 1 1 I I 1 1 1 1 1 I I I I 1 I I 1 1 1 1 1 I I I 1 1 1 1 I I 1 15.0 I I I I 1 1 I 1 I 1 I 1 I 1 I 1 W -r--1--1--r- - r- --1--r- - --1--r-r- - --1--r-r- 1 W Q' -L-'�--1--L- - --r--I--1'- -'�--1--6-L- --r--I--L-4.- I I I I I I I 1 I I I I 1 I 1 I -t----I--r- - --1--1--r- - --1--r-r- --1--r-r-r- W 10.0 CO) I I 1 I 1 1 I I 1 I I I I I I I -t-y--1--r- -?--1--I--r- -1--I--r-t- --I--I--r-t- W 1 - --I- -1-j--i -L- -j- '_t _1 _ 1 '1 _L_ 1 a, '7- 1 r 1 r 1 i r I 1 i i ±' i I T' ' a. I 1 I I I I 1 I 1 1 I 1 1 I I 1 5.0 O 1 1 1 1 1 1 1 1 1 1 I 1 I 1 I 1 U _1_J_J__L_ I I I I 1 I I I I 1 1 I I 1 I _ -t --I- r- -Y--1--1--r- -7-1--r-t- --t--I--r-t- I I I I 1 1 1 I 1 1 I t 1 I t 0.0 0 5 10 15 20 AXIAL STRAIN -% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 17.6 Dry Density pcf 102.6 Diameter in 2.19 - Height in 4.61 Heigth/Diameter Ratio 2.10 ( � Calculated Saturation % 74.0 Calculated Void Ratio 0.64 Assumed Specific Gravity 2.70 Failure Strain % 0.22 Unconfined Compressive Strength ksf 3.04 Undrained Shear Strength ksf 1.52 Strain Rate in/min 0.04 REMARKS: Tested at natural moisture content. Failure Mode : Multi-Crack TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: CME TUBE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-3,11-12tt LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL),light to medium PROJECT NO: CDMO2007 brown CLIENT. CDM DATE: 4/23/03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.16 28 13 15 78 UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL),light to medium brown Die. : 2.19 In Ht. 4.61 in SAMPLE LOCATION: B-3,11-12ft Area: 3.781 inA2 Weight: 552.2 g No. Def. Load Load E s% Corr. UC UC UC UC UC/Pa R (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings in^2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.781 0.0 0 0.000 0.0 0.00 2 0.0100 80.00 80.0 0.002 0.22 3.789 21.1 3041 3.041 145.6 1.44 3 0.0200 14.00 14.0 0.004 0.43 3.797 3.7 531 0.531 25.4 0.25 4 0.0300 22.00 22.0 0.007 0.65 3.805 5.8 833 0.833 39.9 0.39 5 0.0400 28.00 28.0 0.009 0.87 3.814 7.3 1057 1.057 50.6 0.50 6 0.0500 35.00 35.0 0.011 1.08 3.822 9.2 1319 1.319 63.1 0.62 7 0.0600 43.00 43.0 0.013 1.30 3.830 11.2 1617 1.617 77.4 0.76 8 0.0700 49.00 49.0 0.015 1.52 3.839 12.8 1838 1.838 88.0 0.87 9 0.0800 54.00 54.0 0.017 1.73 3.847 14.0 2021 2.021 96.8 0.95 10 0.0900 58.00 58.0 0.020 1.95 3.856 15.0 2166 2.166 103.7 1.02 11 0.1000 61.00 61.0 0.022 2.17 3.864 15.8 2273 2.273 108.8 1.07 12 0.1100 63.00 63.0 0.024 2.39 3.873 16.3 2342 2.342 112.2 1.11 13 0.1200 65.00 65.0 0.026 2.60 3.882 16.7 2411 2.411 115.5 1.14 14 0.1300 65.00 65.0 0.028 2.82 3.890 16.7 2406 2.406 115.2 1.14 15 0.1400 65.00 65.0 0.030 3.04 3.899 16.7 2401 2.401 114.9 1.13 16 0.1500 63.00 63.0 0.033 3.25 3.908 16.1 2322 2.322 111.2 1.10 17 0.1600 60.00 60.0 0.035 3.47 3.917 15.3 2206 2.206 105.6 1.04 -• 18 0.1700 57.00 57.0 0.037 3.69 3.925 14.5 2091 2.091 100.1 0.99 GREGORYGEOTECHNICAL uC-02007-R-3_11-17An PLATE: B-UC.16a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 1 1 I I 1 I I 1 1 t 1 1 1 I 1 I � 1 I 1 I I I I I I I I I I 1 t 1 x 40.0 1 -r �--1--r- -�--1--I--r- -�--1--r-r- --1--I--r-r- _L -1--+--L- -�-J--t--L- -'t--+--L-�'- -J--t--L-+- I I I -'-- -1- --'--�-- -�-�--�-�-- -J--'--L_1 - 1 - --I- I I I I I I 1 I 7I I I I -r- -T-1,--I--r- -1--I--r-r- - --1--r-r- 30.0 I I I I 1 1 1 t 1 I I I 1 1 I I - r-Y--I--r- -Y--I-'I--r- -�--I--r-r- --I--I--r-r- W L_J_J-_L_ _J_J__I--I-_ _J_J-_L_L_ _J-_I_-L_L_ -F �-co) - � 20.0 W L_J_-I-_L_ _J_J__I__L_ _J-_I__L_L_ _J_-1-_L_L_ I I I I I 1 I I 1 1 I 1 1 I I I �. -t-'1--I--r- -Y--I--I--r- -1--I--r-t- --1--I--r-r- _1_J__I__L_ _J_J_-1-_L_ _J_J__L_L_ _J__I__L_1_ O 10.0 1 1 1 I I I 1 I I i I I I I 1 1 I 1 I I I I I I I I I I 1 I I I V -t-y--1--r- -Y-1--r-r- --1--1--r-r- --1--I--r-t- _1_J__I__L_ _J_J_-t-_L_ _J_-I__L_L_ _J-_I__L_1_ 1 1 1 1 I I I 1 1 I 1 1 1 I 1 1 -T- --,--,-- -1-1--,--�- - --,--,--r- -1--,--�-T- -t-ti--1--r- -Y--1--I--r- -y--I--r-r- --1--1--r-t- 0.0 0 5 10 15 20 AXIAL STRAIN- % SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 15.5 Dry Density pcf 121.5 Diameter in 2.01 Height in 4.32 Heigth/Diameter Ratio 2.15 - Calculated Saturation % 86.1 Calculated Void Ratio 0.54 Assumed Specific Gravity 3.00 Failure Strain % 2.08 Unconfined Compressive Strength ksf 43.99 Undrained Shear Strength ksf 22.00 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-3,55-56 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE, gray PROJECT NO: CDMO2007 CLIENT: CDM DATE: 4/23/03 LL: PL: PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B—UC.17 NA NA NA NA UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE, gray Dia. : 2.01 in Ht. : 4.32 In SAMPLE LOCATION: B-3,55-56 ft Area: 3.186 In"2 Weight: 507.4 g No. Def. Load Load s s% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings InA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.186 0.0 0 0.000 0.0 0.00 2 0.0050 112.00 112.0 0.001 0.12 3.189 35.1 5057 5.057 242.1 2.39 3 0.0100 203.00 203.0 0.002 0.23 3.193 63.6 9155 9.155 438.3 4.32 4 0.0150 311.00 311.0 0.003 0.35 3.197 97.3 14009 14.009 670.8 6.62 5 0.0200 396.00 396.0 0.005 0.46 3.201 123.7 17817 17.817 853.1 8.42 6 0.0250 467.00 467.0 0.006 0.58 3.204 145.7 20987 20.987 1004.9 9.91 7 0.0300 538.00 538.0 0.007 0.69 3.208 167.7 24150 24.150 1156.3 11.41 8 0.0350 595.00 595.0 0.008 0.81 3.212 185.3 26677 26.677 1277.4 12.60 9 0.0400 649.00 649.0 0.009 0.93 3.215 201.8 29064 29.064 1391.7 13.73 10 0.0450 703.00 703.0 0.010 1.04 3.219 218.4 31446 31.446 1505.7 14.86 11 0.0500 754.00 754.0 0.012 1.16 3.223 233.9 33688 33.68B 1613.0 15.91 12 0.0550 802.00 802.0 0.013 1.27 3.227 248.5 35790 35.790 1713.7 16.91 13 0.0600 845.00 845.0 0.014 1.39 3.231 261.6 37665 37.665 1803.5 17.79 14 0.0650 882.00 882.0 0.015 1.50 3.234 272.7 39268 39.268 1880.2 18.55 ` 15 0.0700 917.00 917.0 0.016 1.62 3.238 283.2 40779 40.779 1952.6 19.26 16 0.0750 945.00 945.0 0.017 1.73 3.242 291.5 41974 41.974 2009.8 19.83 17 0.0800 970.00 970.0 0.019 1.85 3.246 298.8 43034 43.034 2060.6 20.33 18 0.0850 985.00 985.0 0.020 1.97 3.250 303.1 43648 43.648 2090.0 20.62 19 0.0900 994.00 994.0 0.021 2.08 3.253 305.5 43995 43.995 2106.6 20.78 20 0.0920 993.00 993.0 0.021 2.13 3.255 305.1 43930 43.930 2103.5 20.75 A w 1w iee GREGORY GEOTECHNICAL UC-02007-B-3.55-56x1s PLATE: B-UC.17a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 160.0 -r-�--1--1-- -r-r-�--1----r-r-T-�- --1--r-r-r- —r—�—'1--1-- —r—r—i--I----r-r—T—i— --I--r-r—r- -r—t--1--1-- —r—r—t--1----r—r—r—t— --1--r—r—r- -t—t-1--I-- —r—t—t—i----r—r—t—t— --1--F--r—t— V.. —+—t—i--I-- —r—+—t—1----F--F--+—t— --1--F--r—t— N —4--4-1--1-- —F'—+—4--4----1—_F•—'1'-4_ --1--1--�—+— Y —4--4-4--1-- —F'—4--4—4----1--L—+-4— --1--1--�—�'— F 120.0 CO) _ _1_J__I__ _L_1_1_J____L_L_1_1_ _L_1_J__I—_ —L_1_1_J____L—L_1_1_ __1__L_L_1_ � L_1_J__I__ _L-1_1_J_--_L_L_1_1_ L_1_J__1---_L_L_1—J__--L_L_1_1_ __1__L_L_1_ 1-1_J__1----L_1-1_J__—_1__L_1_1_ _�__1__L_1_ 1-1-J--1-- -L-1-1-J----1--L -1-1- - --1--L-1- N I I I I _ I I 1 1 1 I I I I I I --------1----- ---------- W 80.0 I I I I — —F—T— I I C F 1 1 — I--F—F—T— N r-7-j--1-- -r-T-7-j----i-r-T-7- --1--i-r-T - N -T-7-1--1-- -r-r-1--1----j-r-T-7- --1--r-r-T— W —r-7-1--1-- —r-r-7--1----r-r-T-7— --1--r—F—T— NN —r-4-1--1-- —r—T—I--1----r—r—r—I— --1--r—r—r- 0. —r—?-1—n-- —r—r-1--1----r'r—T—?— --1--r'r—T— (L r—?-7--1----r—r—i--1----r-r-7-1— --1--r—r-7— 40.0 0 -r-t--1--1-- -r-r-t-1----r-r-t-t- --1--r-r-t- -t—t—i--1-- —F--t—t-1----F--r—+-4— --1--F--F--+— L) —+-4-1--I-- —1--+-4-1----1--1--+-4— --1--F—�—+— —}-4—A--1----�—+—4--4----1--L—�'—4— --1--1--�—+— —+-4-4--1-- —F'-4—4—4————1--6-4-4— --1--1--L-4— _1_1—.d--1----L_1_1_J—___L_L_1_1_ __I—_L_L_1— 1 _1__ _L_1-1_J_—_—L_L_1_1— _-1—_L_L_1_ 0.0 0 5 10 15 20 AXIAL STRAIN- % SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 7.7 Dry Density pcf 136.0 Diameter in 1.98 Height In 4.52 Heigth/Diameter Ratio 2.29 Calculated Saturation % 61.1 Calculated Void Ratio 0.38 Assumed Specific Gravity 3.00 Failure Strain % 0.99 Unconfined Compressive Strength ksf 117.08 Undrained Shear Strength ksf 58.54 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-5,69-70ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE, gray PROJECT NO: CDM02007 CLIENT: CDM DATE: 4/24/03 LL: PL: PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.29 NA NA NA NA UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE, gray Dia. : 1.98 in Ht. : 4.52 in SAMPLE LOCATION: B-5,69-70ft Area: 3.076 inA2 Weight: 534.8 g No. Def. Load Load s 6% Corr. UC UC UC UC UC/Pa f (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi . psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.07E 0.0 0 0.000 0.0 0.00 2 0.0050 193.00 193.0 0.001 0.11 3.079 62.7 9025 9.025 432.1 4.2E 3 0.0100 738.00 738.0 0.002 0.22 3.083 239.4 34473 34.473 1650.E 18.29 4 0.0150 1224.00 1224.0 0.003 0.33 3.08E 396.E 57111 57.111 2734.E 28.98 5 0.0200 1818.00 1818.0 0.004 0.44 3.090 523.7 75411 75.411 3810.8 35.63 6 0.0250 1952.00 1952.0 0.006 0.55 3.093 631.1 90877 90.877 4351.4 42.93 7 0.0300 2184.00 2184.0 0.007 0.66 3.097 705.3 101565 101.565 4863.1 47.98 8 0.0350 2371.00 2371.0 0.008 0.77 3.100 764.9 110138 110.138 5273.6 52.03 9 0.0400 2514.00 2514.0 0.009 0.88 3.103 810.1 116651 116.651 5585.5 55.11 10 0.0450 2526.00 2526.0 0.010 0.99 3.107 813.0 117077 117.077 5605.9 55.31 GREGORY GEOTFCHNICd l t IC-19nn7-R-5 R47n Yla PLATE: B-UC.29a GREGORY GEOTECHN/CAL Percent Swell Test Report (Free-Swell Test) Project No.: CDM02007 Date: 3/27/03 Client: CDM Project: Trinity River Siphon Soil Description : FAT CLAY(CH), dark grayish brown Location: B-1, 7-9 ft-Specimen air dried prior to test. SPECIMEN DATA Note: Weights are in grams unless noted otherwise. Initial final Overburden depth-ft : 8.0 Ring Wt.: 243.79 Wet soil+tare: 132.36 Wet soil+tare: 130.69 Required Stress-psi: 7.6 Ring Dia.: 2.50 Tare No. : 116 Tare.No. : 106 Required Load-Ibs: 37.2 Ring Ht.: 1.00 Tare Wt 30.66 Tare Wt 30.62 Applied by MAD Wt soil+ring: 419.40 Dry soil+tare: 117.14 Dry soil+tare: 114.78 Oedometer No.: FS-1 Dry Wt/lb/ft3: 115.9 Moisture%: 17.6 Moisture%: 18.9 READINGS DATA Date&Time Elapsed Time Dial Change in Dial Factor(+1:Readings Increase for Swell): 1.0 (mm/dd/yy, hh:mm) Min. Reading Height Comments 3/27/0316:07 0.0 0.4030 0.000 3/27/03 16:12 5.0 0.3870 -0.016 Seating load applied actual load = 37.5 Ibs) 3/27/0316:13 6.0 0.3860 -0.001 Water Added 3/27/0316:51 44.0 0.3870 0.001 3/27/03 22:24 377.0 0.3960 0.009 3/28/0311:13 1146.0 0.4060 0.010 3/28/0317:15 1508.0 0.4090 0.003 3/29/03 20:28 3141.0 0.4160 0.007 3/30/0310:29 3982.0 0.4180 0.002 3/30/0310:29 3982.0 0.4200 0.002 4/1/03 12:57 7010.0 0.4220 0.002 SWELL vs.TIME 4/1/03 22:09 7562.0 0.4230 0.001 4/2/03 9:19 8232.0 0.4240 0.001 0.040 •• 4/2/03 15:46 8619.0 0.4240 0.000 0.035 A� 4/2/0316:22 8655.0 0.4240 0.000 0.030 -ram, 0.025 L 0.020 = 0.015 e o, 0,010 0.005 �~ 0.000 -0.005 0 2000 4000 6000 8000 10000 Elapsed Time-Minutes Percent Swell : 3.8 % FreeSwell_02007-1.xis PLATE B-FS.1 GREGORY GEOTECHN/CAL Percent Swell Test Report (Free-Swell Test) Project No.: CDM02007 Date: 3/27/03 Client: CDM Project: Trinity River Siphon Soil Description: FAT CLAY(CH), dark grayish brown Location: B-2,1-2 ft-Specimen air dried prior to test. SPECIMEN DATA Note: Weights are in grams unless noted otherwise. I initial final Overburden depth-ft : 1.5 Ring Wt.: 207.88 Wet soil+tare: 135.02 Wet soil+tare: 142.71 Required Stress-psi: 1.4 Ring Dia.: 2.00 Tare No. : 118 Tare No. : 141 Required Load-lbs: 4.3 Ring Ht.: 1.00 Tare Wt 30.81 Tare Wt 31.52 Applied by MAD Wt soil+ring: 315.95 Dry soil+tare: 122.20 Dry soil+tare: 124.23 Oedometer No.: FS-2 I Dry Wt/lb/ft': 114.9 Moisture%: 14.0 Moisture%: 19.9 READINGS DATA Date&'lime Elapsed Time Dial Change in Dial Factor(+1:Readings Increase for Swell): 1.0 (mm/dd/yy hh:mm) Min. Reading Height Comments 3/27/0313:08 0.0 0.4740 0.000 3/27/03 13:09 1.0 0.4740 0.000 Seating load applied actual load =3.83lbs) 3/27/03 13:10 2.0 0.4750 0.001 Water Added 3/27/0313:32 24.0 0.4770 0.002 3/27/0313:52 44.0 0.4790 0.002 3/27/0314:42 94.0 0.4830 0.004 3/27/0315:30 142.0 0.4860 0.003 3/27/0316:51 223.0 0.4890 0.003 3/27/03 22:25 557.0 0.4940 0.005 3/28/0311:14 1326.0 0.4960 0.002 3/28/03 17:15 1687.0 0.4960 0.000 SWELL vs.TIME 3/29/03 20:28 3320.0 0.4970 0.001 3/30/0310:30 4162.0 0.4970 0.000 0.025 - - 3/30/0319:19 4691.0 0.4970 0.000 �® 4/1/03 0:58 6470.0 0.4970 0.000 = 0.020 4/1/03 22:10 7742.0 0.4970 0.000 rn 0.015 4/2/03 9:20 8412.0 0.4970 0.000 4/2/0315:47 8799.0 0.4970 0.000 � 0.010 - - d m t 0.005 t� 1 i 0.000 0 2000 4000 6000 8000 10000 Elapsed Time-Minutes Percent Swell : 2.3 % FreeSwell 02007-2.xis PLATE B-FS.2 GREGORY GEOTECHN/CAL Percent Swell Test Report (Free-Swell Test) Project No.: CDM02007 Date: 3/27/03 Client: CDM Project: Trinity River Siphon Soil Description : FAT CLAY(CH),dark grayish brown Location: B-1, 2-4 ft SPECIMEN DATA Note: Weights are in grams unless noted otherwise. Initial final Overburden depth-ft : 3.0 Ring Wt.: 244.44 Wet soil+tare: 132.10 Wet soil+tare: 130.69 Required Stress-psi: 2.7 Ring Dia.: 2.50 Tare No. : 138 Tare No. : 124 Required Load-Ibs: 13.2 Ring Ht.: 1.00 Tare Wt 31.24 Tare Wt 30.62 Applied by MAD Wt soil+ring: 411.35 Dry soil+tare: 118.93 Dry soil+tare: 113.75 Oedometer No.: FS-3 Dry Wt/lb/fe: 112.6 MoistureW 15.0 Moisture%: 20.4 READINGS DATA Date&Time sed Tel Dial Change in Dial Factor(+1:Readings Increase for Swell): 1.0 Elap (mm/dd/yy hh:mm) Min. Reading Height Comments 3/27/0317:09 0.0 0.4810 0.000 3/27/03 17:15 6.0 0.4770 -0.004 Seating load applied actual load = 13.25 Ibs 3/27/03 17:22 13.0 0.4750 -0.002 Water Added 3/27/0317:36 27.0 0.4760 0.001 3/27/03 22:26 317.0 0.4860 0.010 3/28/0311:15 1086.0 0.4990 0.013 3/28/0317:16 1447.0 0.5020 0.003 3/29/03 20:29 3080.0 0.5090 0.007 3/30/0310:31 3922.0 0.5100 0.001 3/30/0319:19 4450.0 0.5110 0.001 4/1/03 12:58 6949.0 0.5120 0.001 SWELL vs.TIME 4/1/03 22:10 7501.0 0.5130 0.001 4/2/03 9:21 8172.0 0.5130 0.000 0.040 - 4/2/0315:47 8558.0 0.5130 0.000 0.035 t 0.030 t 0.025 d 0.020 = 0.015 c 0.010 _ r 0.005 0.000 -0.005 0 2000 4000 6000 8000 10000 Elapsed Time-Minutes Percent Swell : 3.6 % FreeSwell_02007-3.xls PLATE B-FS.3 GREGORY GEOTECHN/CAL Percent Swell Test Report - (Free-Swell Test) Project No.: CDM02007 Date: 4/18/03 Client: CDM Project: Trinity River Siphon Soil Description : SANDY LEAN CLAY(CL), light to medium brown Location: B-5, 1-2ft SPECIMEN DATA Note: Weights are in grams unless noted otherwise. Initial final Overburden depth-ft : 2.0 Ring Wt.: 207.89 Wet soil+tare: 133.64 Wet soil+tare: 136.92 Required Stress-psi: 1.7 Ring Dia.: 2.00 Tare No. : 115 Tare No. : 126 Required Load-lbs: 5.4 Ring Ht.: 1.00 Tare Wt 30.19 Tare Wt 31.62 Applied by MAD Wt soll+ring: 310.00 Dry soil+tare: 122.42 Dry soil+tare: 121.58 Oedometer No.: FS-2 Dry Wt/lb/ft3: 110.4 Moisture%: 12.2 Moisture%: 17.1 READINGS DATA Date&Time Elapsed Time Dial Change In Dial Factor(+1:Readings Increase for Swell): 1.0 (mm/dd/yy hh:mm) Min. Reading Height Comments a 4/18/0310:28 0.0 0.4790 0.000 4/18/03 10:28 0.0 0.4780 -0.001 Seatingload applied actual load=5.4lbs 4/18/03 10:30 2.0 0.4780 0.000 Water Added 4/18/0311:29 61.0 0.4780 0.000 4/18/0312:23 115.0 0.4780 0.000 4/18/0314:02 214.0 0.4780 0.000 4/18/0315:19 291.0 0.4780 0.000 4/18/0316:46 378.0 0.4780 0.000 4/20/0312:18 2990.0 0.4780 0.000 4/20/03 21:52 3564.0 0.4780 0.000 4/21/0319:50 4882.0 0.4780 0.000 SWELL vs.TIME 4/22/03 9:35 5707.0 0.4780 0.000 4/22/0315:21 6053.0 0.4780 0.000 1.000 -- 4/23/03 9:34 7146.0 0.4780 0.000 H 0.900 t 0.800 S 0.700 - 0.600 - 41 0.500 e 0.400 e 0.300 t 0.200 0.100 0.000 0 2000 4000 6000 8000 Elapsed Time-Minutes Percent Swell : 0.0 % FreeSweli_02007-4.xis PLATE B-FSA GREGORY GEOTECHNICAL Percent Swell Test Report (Free-Swell Test) Project No.: CDM02007 Date: 4/18/03 Client: CDM Project: Trinity River Siphon Soil Description : SANDY LEAN CLAY(SC), light to medium brown Location: B-2, 12-13ft SPECIMEN DATA Note: Weights are in grams unless noted otherwise. Initial final Overburden depth-ft : 13.0 Ring Wt.: 209.91 Wet soil+tare: 131.93 Wet soil+tare: 140.76 Required Stress-psi: 11.6 Ring Dia.: 2.00 Tare No. : 129 Tare No. : 137 Required Load-Ibs: 36.5 Ring Ht.: 1.00 Tare Wt 31.76 Tare Wt 32.49 Applied by MAD Wt soil+ring: 316.00 Dry soil+tare: 117.19 Dry soil+tare: 122.51 Oedometer No.: FS-1 Dry Wt/lb/ft3: 109.7 Moisture%: 17.3 Moisture%: 20.3 READINGS DATA Date&Time Elapsed Time Dial I Change in Dial Factor(+1:Readings Increase for Sweil): 1.0 (mm/dd/yy hh:mm) Min. Reading Height Comments 4/18/0311:24 0.0 0.4790 0.000 4/18/03 11:28 4.0 0.4630 -0.016 Seating load applied (actual load= 36.7 Ibs 4/18/03 11:29 5.0 0.4630 0.000 Water Added 4/18/0312:22 58.0 0.4650 0.002 4/18/0314:01 157.0 0.4650 0.000 4/18/0315:19 235.0 0.4660 0.001 4/18/0316:45 321.0 0.4690 0.003 4/20/0312:17 2933.0 0.4690 0.000 4/20/03 21:52 3508.0 0.4690 0.000 4/21/03 19:50 4826.0 0.4690 0.000 4/22/03 9:35 5651.0 0.4690 0.000 SWELL vs.TIME 4/22/0315:21 5997.0 0.4690 0.000 4/22/03 9:31 5647.0 0.4690 0.000 0.00� -- �, 0.00s m c=i 0.005 e r 0.004 of 0.003 0.002 rn A 0.001 r 0.000 -0.001 0 2000 4000 6000 8000 Elapsed Time-Minutes Percent Swell : 0.6 % FreeSwell_02007-6.xis.xis PLATE B-FS.5 U.S.SIEVE OPENING IN INCHES I U.S.SIEVE NUMBERS I HYDROMETER 6 4 3 2 1.5 1 3/4 1/2318 3 6 810 1416 20 30 40 50 60 100140200 ` 100 95 90 85 80 75 .� 70 65 W 60 m 55 Z50 LL 1- 45 z w 40 w o. 35 30 25 20 15 10 5 0 100 10 1 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS COBBLES GRAVEL SAND SILT OR CLAY coarse I fine lcoemel medium I fine Specimen Identification Classification LL PL PI Cc Cu P B-1 4.0 FAT CLAY(CH) 54 17 37 Specimen Identification D100 D85 D50 D15 %Gravel %Sand %Silt %Clay • B- ! 4.0 4.75 0.0 6.4 93.6 0 U' ad g a GREGORY GEOTECHNICAL GRAIN SIZE DISTRIBUTION N ;;.:.;:;>; 2001 WEST 44th AVENUE Project: CDM-Trinity River Siphon Project y STILLWATER, OKLAHOMA 74074-2415 Telephone: 405-747-8200 Location: VCWWTP, Fort Worth,TX Fax: 405-747-8201 Report No: R02007 PLATE B-GS.1 U.S.SIEVE OPENING IN INCHES I U.S.SIEVE NUMBERS I HYDROMETER 6 4 3 2 1.5 1 3/4 1/23/8 3 4 6 610 1416 20 30 40 50 60 100140 200 100 95 90 85 80 75 70 65 w 60 m 55 w 50 z H 45 z w 40 w a 35 30 25 20 15 10 5 0 100 10 1 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS } COBBLES GRAVEL SAND SILT OR CLAY coarse fine coarse I medium fine Specimen Identification Classification LL PL PI Cc' Cu • B-2 37.0 Specimen Identification D100 D85 D50 D15 %Gravel %Sand %Silt I %Clay B-2 37.0 2 0.191 0.095 0.0 66.4 33.6 0 a U' $ GREGORY GEOTECHNICAL GRAIN SIZE DISTRIBUTION 2001 WEST 44th AVENUE Project: CDM-Trinity River Siphon Project y STILLWATER, OKLAHOMA 74074-2415 INN"' Telephone:Telephone: 405-747-8200 Location: VCWWTP, Fort Worth,TX N I�VI<r ? ::` Fax: 405-747-8201 � Report No: R02007 PLATE B-GS2 �w�m ��u�iiiiiNii�iiN unm'�■ �� �� ���=��NII��■IAN �I ■ ��IIIA�IIIIN�■IARII� III ■ 11�■ IIIII��AII��IIY�I�IlAlll�llll�■ I��I�II��NII�■III�1�1�dll �IIIIII��YII�I �INII 1� ��IIIIII �IIII I ` IIIIII�■ �M�RI II�IIII�■ III 1� II��RIr�� �I �I�II■■YIIIN� ����i■onm�■mm�uim �,u�i Imo o • ■ i U,S.SIEVE OPENING IN INCHES I U.S.SIEVE NUMBERS I HYDROMETER 6 4 3 2 1.5 1 3/4 1/23/8 3 4 6 810 1416 20 30 40 50 60 100 140 200 100 95 90 85 _ 80 75 70 65 x w 60 >- 55 m F. w 50 z M I— 45 z w 40 w a 35 30 25 20 15 10 5 0 100 10 1 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS _ COBBLES GRAVEL SAND SILT OR CLAY coarse fine coarse I medium fine Specimen Identification Classification LL PL PI Cc Cu ® B-3 25.0 2.70 143.3 Specimen Identification D100 D85 D50 D15 %Gravel %Sand %Silt I %Clay A B-3 25.0 38.1 13.732 0.481 33.1 26.4 6.7 0 c� a s GREGORY GEOTECHNICAL GRAIN SIZE DISTRIBUTION 2001 WEST 44th AVENUE Project: CDM-Trinity River Siphon Project •"<a STILLWATER, OKLAHOMA 74074-2415 Telephone: 405-747-8200 Location: VCWWTP, Fort Worth, TX '` Fax: 405-747-8201 Report No: R02007 PLATE B-GS.5 iN�■m� ��i�ii�!ie�m ������inm au �l� � �iiiiw■ii�w=� �■iow��i 1 � �:�����- ii�ii� itn�m��ii�nomw I��iumm■ �■IIIIII I ■DIIIY�■ �■IIIIY III�� ■III I ■I �illlo� i ��i��■Hiii��iiiii�ii�w��oui� ii� OM�iiininwi i��i�i�ii�iun■iiii� m■inm■■imon■uiun�ne■inn■ nuimu■■inm■mn��m�■m��v om u�inn imp iva��i�usiumw■ �i iun�m�■�im�■imn■ u�un� m m Ik� iw � ������iii mmr■iumvonn■ Specimen Identification Specimen Identification 13 GRAIN SIZE DISTRIBUTION Project: CDM-Trinity River Siphon Project Location: VCWWTP, Fort Worth, TX ,Report No: R02007 PLATE B-GS.8 1■■IIYII�YI�m�I�1�IM�,�11�;YN� n ■uensunnn■umi■■�mn�■amm■ 00 INrlll■II Y�Y 1 -11A �IIII�Y� m ii■�m���01! �II�■iiNn� EMIR 1 Classification 11 TRIM iiui �w�°1�■ II�IANI�■ I�IIIY�■ n�iann■� �ine�■ n�item■i � i ��■ulA�i lama n IAI�'� IIII 1 11�1��111�� �m m i i nn � i��i■ m !�i i.i'i!'lli���iryiiAii�i�ini��lii ° ��■� m III�IR���IIIC ICI ■ �� IN��� ���� m�■iii�i�l�iii� w■�m m ��� ii�n■i me U.S.SIEVE OPENING IN INCHES I U.S.SIEVE NUMBERS I HYDROMETER 6 4 3 2 1.5 1 3/4 1/2318 3 4 6 810 1416 20 30 0 50 60 100140 200 100 95 90 85 80 75 70 65 W 60 m 55 Z50 1— 45 z w 40 + 0- 35 30 25 20 15 1d 5 0 1 7. 100 10 1 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS COBBLES GRAVEL SAND SILT OR CLAY coarse fine coarse I medium fine Specimen Identification Classification LL PL PI Cc Cu s B-5 17.0 Specimen Identification D100 D85 D50 D15 %Gravel %Sand %Silt %Clay i B-5 17.0 2 0.142 0.088 0.0 61.3 38.7 0 a U' GREGORY GEOTECHNICAL GRAIN SIZE DISTRIBUTION : ..;; 2001 WEST 44th AVENUE Project: CDM-Trinity River Siphon Project STILLWATER, OKLAHOMA 74074-2415 Telephone: 405-747-8200 Location: VCWWTP, Fort Worth, TX Fax: 405-747-8201 Report No: R02007 PLATE B-GS.12 ��Y�I'I'�pI�ApI�IIII�YYIIA�p1 DIn� IIIYII IAII � � �1:iA�nl II�IyIiu IYNI�—IIII�1� m■I�ni� li,��l� I�ii' imm�■ii�nw■ ian � innm■�un ��N���IIIIIII�■II IIII i �w U.S.SIEVE OPENING IN INCHES I U.S.SIEVE NUMBERS I HYDROMETER 6 4 3 2 1.5 1 3/4 1123/6 3 4 6 610 1416 20 30 40 50 60 100 140 200 100 95 90 85 80 75 70 I- 65 w 60 m 55 o: z 50 F- 45 z w 40 o_ 35 30 25 20 15 10 5 0 100 10 1 0.1 0.01 0.001 GRAIN SIZE IN MILLIMETERS COBBLES GRAVEL SAND SILT OR CLAY coarse fine coarse medium floe Specimen Identification Classification LL PL PI Cc Cu ® B-5 23.0 Specimen Identification D100 D85 D50 D15 %Gravel %Sand %Silt I %Clay ® B-5 23.0 2 0.276 0.109 0.0 67.1 32.9 0 m g N a (7 n GREGORY GEOTECHNICAL GRAIN SIZE DISTRIBUTION 2001 WEST 44th AVENUE Project: CDM-Trinity River Siphon Project STILLWATER, OKLAHOMA 74074-2415 Telephone: 405-747-8200 Location: VCWWTP, Fort Worth, TX ::.< :: .,;,:: ' Fax: 405-747-8201 Report No: R02007 PLATE B-GS.14 A ��r■imm�� � imn■�ii� � �"'�' IQ�i■inm■ ■�ni inner■inn �■iY �■'inl�� �rnn■iu� m -m GREGORY GEOTECHNICAL Report No. R02007 TRIAXIAL COMPRESSION MODULUS TEST REPORT Project No: CDM02007 Project: Trinity River Siphon Project Sample Location/Description: B-2, 17-18 ft-LEAN CLAY(CL),light brown Specimen Data: LL: 31 PL: 12 PI: 19 -200 W 88 Effective Stress: 12.0 psi Test Type: UU Triaxial at Field Moisture 75- .................................. .. ..... ------ ...... ------------------- ................. .................... ..................11........ ....... 70 - 7 - --------- -- -- ............... ...... ....... ................. ...............'-.4............ .......................... ------ ......................... .................... ........................................ ............. ...........I..............65- . . . ................... 1-...... .........I ............ ...... ......I..... ....... ..... .. . . .... . ........................ . . . . . . . . . . ................I......... 4.--..l................. i i i i ....: ..................... 60 -4� .......... .............................................. I..... ......... .................................. ................�--;--4...:...... ......4 ......... ------ 55- . I . . -. I I ;... ..I.....:...................... --- . . -.:...,---:...... ...... ..... ...................... ..............j-4-j......... ...............L...... ...... ...... ........................................... ............................ ..................... ......7":....... ............ ...... ................ ..... .................. ................. ..........0............... ......................4 .............. ................... .......... j............ ........... -............ ........ CL ........I ............ J'- ........ .......... ............................................................... . . ... ................ ........ 0)40 . ................ ------ ------- ............... '.................. .................... ....... ........... .....................4... 0.......... -35 - ............ . ......... ...........:...... .......... ........... ---------------- .................................... . . . . . . . . . . . . . ....... ... ............... ...... . . . . . . . ...................... 30 - 0 ..................................----....... ..................... ......... ....... .......... ....................... ............... ...................... .................... .0.....F..;::{... ... ........... I.. .. ........ 025 i.. L............................. .............j....................... 4- . .......... ............................ ................. .......... ...... .............. ............................ 20 .......... . ........ .......... ........ ......... ................. ....................... ..................... ............................. .......... 15 . . . . . . . . . . . . . . .............. ............... ...... ........ ..... ............... ...... j........... .. .. ...... ........................................... .............. ......... ............... ................. ........ ....... ............... 10 ............................................ ....... .......................... ------------- ......... ....... ................ ....... .. ..... ....................:------ ...................... ........... ............ ........ 5 ............*............... I..... ........ ....... .. .......... ...... ..... ...... ............ 0.000 0.020 0,040 0.060 0.080 0.100 0.120 0.140 0.180 0.180 0.200 Strain s (in/in) Specimen Data initial final Diameter Height Moist soil &Tare : 92.54 g 92.54 g top 2.751 in Ht 1 5.733 in Dry soil and Tare 83.58 9 83.58 9 mid 2.756 in Ht 2 5.712 in Tare : 30.57 g 30.57 9 bot 2.76 in Ht 3 5.708 in Moisture content: 16.90 % 16.90 % Avg 2.76 in Ht 4 5.698 in Weight: 1170.6 g Height to Dia. Ratio: 2.07 Avg 5.71 in Change in Ht due to saturation : NA in Initial specimen vol : 558.33 cc Change in Ht due to consolidation NA in At test specimen vol 558.33 cc Change in pipet vol due to consolidation NA cc Initial dry density: 111.96 pcf Saturation Parameter " B NA At test dry density: 111.96 pcf Modulus Values Et= 1784 psi Ethyp= NA psi Es= 1869 psi V.= 0.50 V.= 0.50 E.hyp= NA psi Em= 1232 psi (E,is @ 50%Max Acr; E,is at Max Acr, Max Acr<=5%Strain) Er,'= 1246 psi E'hyp= NA psi Em= 822 psi I P.Pen.- 4.25 tsf P.Vane, NA hyp=modulus calculated from transformed hyperbolic-curve approximation Et= Initial Tan E,=Secant Em=Max Acr<--5%Strain v,=Calculated Poisson's Ratio v.=Assumed Poisson's Ratio used in E'calculations UUM02007—B-2-17-18.xls PLATE B-UUM.1 GREGORY GEOTECHHICAL Report No.R02007 TRIAXIAL COMPRESSION MODULUS TEST-READINGS DATA Cell Pressure: 12.0 psi Back Pressure: 0.0 1psl Effective Stress: 12.0 psi Diameter : 2.03 in Area: 3.237 in^2 Ht. 4.48 in Weight: 492.1 g No. Def. Load U Load s s% Corr. oa 63' al, al':crT q (in) Dial (psi) Ibs) in/in) Area (psi) (psi) (psi) (psi) (psi) U,.nits ! in 1 0.0000 2.0 0.0 0.0 0.0 3.237 0.0 12.0 12.0 1.000 12.0 0.0 2 0.0200 13.0 11.0 0.004 0.45 3.251 3.4 12.0 15.4 1.282 13.7 1.7 - 3 0.0300 26.0 24.0 0.007 0.67 3.258 7.4 12.0 19.4 1.614 15.7 3.7 4 0.0400 47.0 45.0 0.009 0.89 3.266 13.8 12.0 25.8 2.148 18.9 6.9 5 0.0500 69.0 67.0 0.011 1.12 3.273 20.5 12.0 32.5 2.706 22.2 10.2 6 0.0600 85.0 83.0 0.013 1.34 3.280 25.3 12.0 37.3 3.108 24.7 12.7 7 0.0700 99.0 97.0 0.016 1.56 3.288 29.5 12.0 41.5 3.458 26.8 14.8 8 0.0800 112.0 110.0 0.018 1.79 3.295 33.4 12.0 45.4 3.782 28.7 16.7 9 0.0900 122.0 120.0 0.020 2. 11 3.303 36.3 12.0 48.3 4.028 30.2 18.2 s 10 0.1000 133.0 131.0 0.022 2.23 3.310 39.6 12.0 51.6 4.298 31.8 19.8 11 0.1100 144.0 142.0 0.025 2.46 3.318 42.8 12.0 54.8 4.566 33.4 21.4 12 0.1200 153.0 151.0 0.027 2.68 3.326 45.4 12.0 57.4 4.784 34.7 22.7 13 0.1300 161.0 159.0 0.029 2.90 3.333 47.7 12.0 59.7 4.975 35.9 23.9 14 0.1400 168.0 166.0 0.031 3.13 3.341 49.7 12.0 61.7 5.141 36.8 24.8 15 0.1500 176.0 174.0 0.033 3.35 3.349 52.0 12.0 64.0 5.330 38.0 26.0 16 0.1600 182.0 180.0 0.036 3.57 3.356 53.6 12.0 65.6 5.469 38.8 26.8 17 0.1700 188.0 186.0 0.038 3.79 3.364 55.3 12.0 67.3 5.607 39.6 27.6 18 0.1800 193.0 191.0 0.040 4.02 3.372 56.6 12.0 68.6 5.720 40.3 28.3 19 0.1900 198.0 196.0 0.042 4.24 3.380 58.0 12.0 70.0 5.833 41.0 29.0 20 0.2000 203.0 201.0 0.045 4.46 3.388 59.3 12.0 71.3 5.944 41.7 29.7 21 0.2200 208.0 206.0 0.049 4.91 3.404 60.5 12.0 72.5 6.044 42.3 30.3 22 0.2400 215.0 213.0 0.054 5.36 3.420 62.3 12.0 74.3 6.190 43.1 31.1 + 23 0.2600 221.0 219.0 0.058 5.80 3.436 63.7 12.0 75.7 6.311 43.9 31.9 24 0.2800 227.0 225.0 0.063 6.25 3.452 65.2 12.0 77.2 6.431 44.6 32.6 25 0.3000 231.0 229.0 0.067 6.70 3.469 66.0 12.0 78.0 6.501 45.0 33.0 26 0.3200 237.0 235.0 0.071 7.14 3.486 67.4 12.0 79.4 6.618 45.7 33.7 27 0.3400 241.0 239.0 0.076 7.59 3.502 68.2 12.0 80.2 6.687 46.1 34.1 28 0.3600 244.0 242.0 0.080 8.04 3.519 68.8 12.0 80.8 6.730 46.4 34.4 29 0.3800 246.0 244.0 0.085 8.48 3.537 69.0 12.0 81.0 6.750 46.5 34.5 30 0.4000 249.0 247.0 0.089 8.93 3.554 69.5 12.0 81.5 6.792 46.8 34.8 31 0.4200 252.0 250.0 0.094 9.38 3.571 70.0 12.0 82.0 6.833 47.0 35.0 32 0.4400 255.0 253.0 0.098 9.82 3.589 70.5 12.0 82.5 6.874 47.2 35.2 33 0.4700 257.0 255.0 0.105 10.49 3.616 70.5 12.0 82.5 6.877 47.3 35.3 34 0.4900 259.0 257.0 0.109 10.94 3.634 70.7 12.0 82.7 6.893 47.4 35.4 35 0.5300 262.0 260.0 0.118 11.83 3.671 70.8 12.0 82.8 6.902 47.4 35.4 F 36 0.5600 264.0 262.0 0.125 12.50 3.699 70.8 12.0 82.8 6.903 47.4 35.4 37 0.5900 267.0 265.0 0.132 13.17 3.727 71.1 12.0 83.1 6.925 47.5 35.5 38 0.6100 269.0 267.0 0.136 13.62 3.747 71.3 12.0 83.3 6.939 47.6 35.6 39 0.6300 270.0 268.0 0.141 14.06 3.766 71.2 12.0 83.2 6.930 47.6 35.6 40 0.6500 271.0 269.0 0.145 14.51 3.786 71.1 12.0 83.1 6.921 47.5 35.5 41 0.6700 273.0 271.0 0.150 14.96 3.806 71.2 12.0 83.2 6.934 47.6 35.6 42 0.6900 273.0 271.0 0.154 15.40 3.826 70.8 12.0 82.8 6.903 47.4 35.4 43 0.7000 274.0 272.0 0.156 15.63 3.836 70.9 12.0 82.9 6.909 47.5 35.5 44 0.7500 275.0 273.0 0.167 16.74 3.887 70.2 12.0 82.2 6.852 47.1 35.1 45 0.7900 276.0 274.0 0.176 17.63 3.929 69.7 12.0 81.7 6.811 46.9 34.9 48 0.8100 278.0 276.0 0.181 18.08 3.951 69.9 12.0 81.9 .6.821 46.9 34.9 47 0.8400 280.0 278.0 0.188 18.75 3.983 69.8 12.0 81.8 6.816 46.9 34.9 48 0.8500 279.0 277.0 0.190 18.97 3.994 69.3 12.0 81.3 6.779 46.7 34.7 T 49 0.8700 280.0 278.0 0.194 19.42 4.017 69.2 12.0 81.2 6.768 46.6 34.6 50 0.8900 281.0 279.0 0.199 19.87 4.039 69.1 12.0 81.1 6.756 46.5 34.5 UUM02007 B-2 17-18.xis PLATE B-UUM.la GREGORYGEOTECHN/CAL Report No. R02007 TRIAXIAL COMPRESSION MODULUS TEST REPORT Project No: CDM02007 Project: Trinity River Siphon Project Sample Location/Description: B-2,27-28 ft-LEAN CLAY WITH SAND(CL),light brown _ Specimen Data: LL: 35 PL: 12 PI: 23 -200 W 74 Effective Stress: 19.0 psi Test Type: UU Triaxial at Field Moisture 140 .t.3.J... ..... . .. .. . J.... .L.t_1.3. t J .i.J... !. ..L.t. .I.{.i. ..1. }. .... i .}• _}_ }.3 • . . . ♦ • . ♦ ♦ i ♦ . . . • • . -•-•-••�• _�--...... .r-i•.•.. ......... ...• • ...._.. •.- .. �.:. 120 . . . . . . A. .J. _ _ .}. .}. _ _ 110 ......... ......... .......... _ 100 . . . ; :-:-.. ..-:- ..;.: :- .:.;- .FE...f}i. ..{;...{.{:•. .:.:.-.}_FL. ...{,..;... . ...... ... . . -t-3 i;.i.;.r i:E:{:i • r. .;•F;y90 . a - . . . •;;•-; • r •I•i: .- 80 F- { F i 70 j. ±{ EE ;._ ......;. . - ,-{ 44- i•i 4 40 - -- ;..E.E_ik•.30 .....,. _ .J...._L.L. _._,...J. .:..L...t. _J.J.J.: . . . ... . . . . .. - - :r_e. ........................ : :.:i :i:;: 20 - :�:' 10 Y, . ......... -r. ,•,- ....J.J. _:_:....L. .._J.J... .:..L.L... .._J.. L_ .L.L_t... .J.J....: L 0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 0.220 0.240 0.260 0.280 0.300 Strain F. (inlin) Specimen Data initial final Diameter Height Moist soil&Tare : 92.64 g 92.64 g top 2.751 in Ht 1 5.733 in Dry soil and Tare : 83.58 g 83.58 g mid 2.756 in Ht 2 5.712 in Tare : 30.57 g 30.57 g bot 2.76 in Ht 3 5.708 in Moisture content: 16.90 % 16.90 % Avg 2.76 in Ht 4 5.698 in Weight: 1170.6 g Height to Dia. Ratio: 2.07 Avg 5.71 in Change in Ht due to saturation : NA in Initial specimen vol : 558.33 cc Change in Ht due to consolidation : NA in At test specimen vol : 558.33 cc Change in pipet vol due to consolidation : NA cc Initial dry density: 111.96 pcf Saturation Parameter " B"= NA At test dry density: 111.96 pcf Modulus Values Et= 3991 psi EthyP= 4555 psi Es= 2313 psi V.= 0.50 V.= 0.50 EshyP= 2278 psi Em= 839 psi (ES is @ 50%Max Ac;Em is at Max Ac,Max Av<=5%Strain) Es'= 1542 psi E'hyp= 1518 psi E'm= 559 psi I P.Pen.: 2.5 tsf IP.Vane: NA hyp=modulus calculated from transformed hyperbolic-curve approximation Et= Initial Tan E,=Secant Em=Max Av<=5%Strain v,=Calculated Poisson's Ratio va=Assumed Poisson's Ratio used in E'calculations UUM02007 B-2 27-28.xis PLATE B-UUM.2 - GREGORY GEOTECHNICAL Report No.R02007 TRIAXIAL COMPRESSION MODULUS TEST-READINGS DATA Cell Pressure: 19.0 psi Back Pressure: 0.0 Ipsi Effective Stress: 19.0 psi Diameter : 1.42 in Area: 1.584 inA2 Ht. 3.17 in Weight: 166.5 g No. Def. Load U Load s s% Corr. Aa a3' al' al':a3' p q (in) Dial (psi) Ibs in/in) Area (psi) (psi) (psi) (psi) (psi) ' n2 1 0.0000 3.0 0.0 0.0 0.0 1.584 0.0 19.0 19.0 1.000 19.0 0.0 2 0.0100 23.0 20.0 0.003 0.32 1.589 12.6 19.0 31.6 1.663 25.3 6.3 3 0.0200 32.0 29.0 0.006 0.63 1.594 18.2 19.0 37.2 1.958 28.1 9.1 4 0.0300 38.0 35.0 0.009 0.95 1.599 21.9 19.0 40.9 2.152 29.9 10.9 5 0.0400 43.0 40.0 0,013 1.26 1.604 24.9 19.0 43.9 2,313 31.5 12.5 6 0.0500 48.0 45.0 0.016 1.58 1.609 28.0 19.0 47.0 2.472 33.0 14.0 7 0.0600 51.0 48.0 0.019 1.89 1.614 29.7 19.0 48.7 2.565 33.9 14.9 8 0.0700 54.0 51.0 0.022 2.21 1.619 31.5 19.0 50.5 2.657 34.7 15.7 9 0.0800 57.0 54.0 0.025 2.52 1.625 33.2 19.0 52.2 2.749 35.6 16.6 10 0.0900 59.0 56.0 0.028 2.84 1.630 34.4 19.0 53A 2.808 36.2 17.2 11 0.1000 62.0 59.0 0.032 3.15 1.635 36.1 19.0 55.1 2.899 37.0 18.0 12 0.1100 63.0 60.0 0.035 3.47 1.641 36.6 19.0 55.6 2.925 37.3 18.3 13 0.1200 65.0 62.0 0.038 3.79 1.646 37.7 19.0 56.7 2.982 37.8 18.8 14 0.1300 67.0 64.0 0.041 4.10 1.651 38.8 19.0 57.8 3.040 38.4 19.4 15 0.1400 68.0 65.0 0.044 4.42 1.657 39.2 19.0 58.2 3.065 38.6 19.6 16 0.1500 69.0 66.0 0.047 4.73 1.662 39.7 19.0 58.7 3.090 38.9 19.9 17 0.1600 71.0 68.0 0.050 5.05 1.668 40.8 19.0 59.8 3.146 39.4 20.4 18 0.1700 73.0 70.0 0.054 5.36 1.673 41.8 19.0 60.8 3.202 39.9 20.9 19 0.1900 74.0 71.0 0.060 5,99 1.685 42.1 19.0 61.1 3.218 40.1 21.1 20 0.2000 75.0 72.0 0.063 6,31 1.690 42.6 19.0 61.6 3.242 40.3 21.3 21 0.2100 76.0 73.0 0.066 6.62 1.696 43.0 19.0 62.0 3.265 40.5 21.6 22 0.2200 78.0 75.0 0.069 6.94 1.702 44.1 19.0 63.1 3.320 41.0 22.0 23 0.2300 79.0 76.0 0.073 7.26 1.708 44.5 19.0 63.5 3.343 41.3 22.3 24 0.2400 80.0 77.0 0.076 7,57 1.713 44.9 19.0 63.9 3.365 41.5 22.6 25 0.2600 82.0 79.0 0.082 8.20 1.725 45.8 19.0 64.8 3.410 41.9 22.9 26 0.2800 83.0 80.0 0.088 8.83 1.737 46.1 19.0 65.1 3.424 42.0 23.0 27 0.2900 84.0 81.0 0.091 9.15 1.743 46.5 19.0 65.5 3.446 42.2 23.2 28 0.3100 85.0 82.0 0.098 9.78 1.755 46.7 19.0 65.7 3.459 42.4 23.4 29 0.3200 86.0 83.0 0.101 10.09 1.761 47.1 19.0 66.1 3.480 42.6 23.6 30 0.3300 87.0 84.0 0.104 10.41 1.768 47.5 19.0 66.5 3.501 42.8 23.8 31 0,3500 88.0 85.0 0.110 11.04 1.780 47.7 19.0 66.7 3.513 42.9 23.9 32 0,3700 89.0 86.0 0.117 11.67 1.793 48.0 19.0 67.0 3.525 43.0 24.0 33 0.3900 89.0 86.0 0.123 12.30 1.806 47.6 19.0 66.6 3.506 42.8 23.8 34 0.4100 90.0 87.0 0.129 12.93 1.819 47.8 19.0 66.8 3.517 42.9 23.9 35 0.4200 91.0 88.0 0.132 13.25 1.826 48.2 19.0 67.2 3.537 43.1 24.1 36 0.4300 92.0 89.0 0.136 13.56 1.832 48.6 19.0 67.6 3.557 43.3 24.3 37 0.4600 93.0 90.0 0.145 14.51 1.852 48.6 19.0 67.6 3.557 43.3 24.3 38 0.5000 94.0 91.0 0.158 16.77 1.880 48.4 19.0 67.4 3.547 43.2 24.2 39 0.5100 96.0 93.0 0.161 16.09 1.887 49.3 19.0 68.3 3.593 43.6 24.6 40 0.5200 95.0 92.0 0.164 16.40 1.894 48.6 19.0 67.6 3.556 43.3 24.3 41 0.5400 96.0 93.0 0.170 17.03 1.909 48.7 19.0 67.7 3.564 43.4 24.4 42 0.5600 97.0 94.0 0.177 17.67 1.923 48.9 19.0 67.9 3.572 43.4 24.4 43 0.5800 98.0 95.0 0.183 18.30 1.938 49.0 19.0 68.0 3.580 43.5 24.6 44 0.6200 99.0 96.0 0.196 19.56 1.969 48.8 19.0 67.8 3.566 43.4 24.4 45 0.6800 100.0 97.0 0.215 21.4512,041 2.016 48.1 19.0 67.1 3.532 43.1 24.1 46 0,7000 101.0 98.0 0.221 22.082.032 48.2 19.0 67.2 3.538 43.1 24.1 47 0.7100 101.0 98.0 0.224 22.40 48.0 19.0 67.0 3.527 43.0 24.0 48 0.7200 102.0 99.0 0.227 22.71 2.049 48.3 19.0 67.3 3.543 43.2 24.2 491 0.7300 102.0 99.0 0.230 23.03 2.057 48.1 19.0 67.1 3.532 43.1 24.1 501 0.7400 1 102.0 1 99.0 0.233 1 23.34 2,066 47.9 19.0 66.9 3.522 43.0 24.0 UUM02007 B-2 27-28.xis PLATE B-UUM.2a GREGORYGEOTECHNICAL Report No. R02007 TRIAXIAL COMPRESSION MODULUS TEST REPORT Project No: CDM02007 Project: Trinity River Siphon Project Sample Location/Description: B-3,17-18 ft-LEAN CLAY WITH SAND(CL), medium to dark brown Specimen Data: LL: 27 PL: 9 PI: 18 -200 W 62 Effective Stress: 12.0 psi Test Type: UU Triaxial at Feld Moisture 30 . L. • ................... .}. _}..................... .r...}. _ .}. 25 .}. .}............................ _ . .L...}. .}. _L...}-• - -t.. .1.. .}............. .}. t ....... ...}...1...}... - r 20 CL v b - 4 `15 ,.. +�+ p10 i . . • • . . • • . . . 1 . • . • • •,-..r...r...r... .......}.._ ___}...}.._r_..r..' -'-r_..}...r...r... ...}...r.._r._.L_.. ...}...r...}...r.._ .._� ..}... .................... r... .._'_.._ . . • ....I............... 5 — 0 0.000 0.020 O.Dy40 0.060 0.080 0.100 0.120 0.140 0.100 Strain E (infin) Specimen Data initial final Diameter Height Moist soil&Tare : 92.54 g 92.54 g top 2.751 in Ht 1 5.733 in Dry soil and Tare : 83.58 g 83.58 g mid 2.756 in Ht 2 5.712 in Tare : 30.57 g 30.57 g bot 2.76 in Ht 3 5.708 in Moisture content: 16.90 % 16.90 % Avg 2.76 in Ht 4 5.e98 in Weight: 1170.6 g Height to Dia. Ratio: 2.07 Avg 5.71 in Change in Ht due to saturation : NA in Initial specimen vol : 558.33 cc Change in Ht due to consolidation : NA in At test specimen vol : 558.33 cc Change in pipet vol due to consolidation : NA cc Initial dry density: 111.96 pcf Saturation Parameter "B"= NA At test dry density: 111.96 pcf Modulus Values E,= 3228 psi Ethyp= 2810 psi ES= 1604 psi V.= 0.39 V.= 0.39 Eshyp= 1405 psi Em= 494 psi (ES is @ 50%Max Acr,ES,is at Max Av, Max Av<=5%Strain) ES= 1152 psi E'hyp= 1009 psi Elm= 354 psi I P.Pen.: 1.5 tsf I P.Vane: NA hyp= modulus calculated from transformed hyperbolic-curve approximation Et= Initial Tan ES=Secant Em=Max Aa<--5%Strain v,=Calculated Poisson's Ratio va=Assumed Poisson's Ratio used in E'calculations UUM02007 B-3 17-18.xis PLATE B-UUM.3 GREGORY GEOTECHNICAL Report No.R02007 TRIAXIAL COMPRESSION MODULUS TEST-READINGS DATA Cell Pressure: 12.0 psi Back Pressure: 0.0 1psI Effective Stress: 12.0 psi �-, Diameter : 1.97 in Area: 3.048 in^2 Ht. : 4.93 In Weight: 474.2 g No. Def. Load U Load 6 6% Corr. Aa a3' al' al':a3' (in) Dial (psi) (Ibs) in/in) Area (psi) (psi) psi (psi) (psi) Unifs_ in^2 1 0.0000 3.0 0.0 0.0 0.0 3.048 0.0 12.0 12.0 1.000 12.0 0.0 2 0.0100 23.0 20.0 0.002 0.20 3.054 6.5 12.0 18.5 1.546 15.3 3.3 t 3 0.0200 32.0 29.0 0.004 0.41 3.060 9.5 12.0 21.5 1.790 16.7 4.7 4 0.0300 38.0 35.0 0.006 0.61 3.067 11.4 12.0 23.4 1.951 17.7 5.7 5 0.0400 43.0 40.0 0.008 0.81 3.073 13.0 12.0 25.0 2.085 18.5 6.5 6 0.0500 48.0 45.0 0.010 1.01 3.079 14.6 12.0 26.6 2.218 19.3 7.3 7 0.0600 51.0 48.0 0.012 1.22 3.086 15.6 12.0 27.6 2.296 19.8 7.8 8 0.0700 54.0 51.0 0.014 1.42 3.092 16.5 12.0 28.5 2.375 20.2 8.2 9 0.0800 57.0 54.0 0.016 1.62 3.098 17.4 12.0 29.4 2.452 20.7 8.7 10 0.0900 59.0 56.0 0.018 1.83 3.105 18.0 12.0 30.0 2.503 21.0 9.0 11 0.1000 62.0 59.0 0.020 2.03 3.111 19.0 12.0 31.0 2.580 21.5 9.5 12 0.1100 63.0 60.0 0.022 2.23 3.118 19.2 12.0 31.2 2.604 21.6 9.6 13 0.1200 65.0 62.0 0.024 2.43 3.124 19.8 12.0 31.8 2.654 21.9 9.9 14 0.1300 67.0 64.0 0.026 2.64 3.131 20.4 12.0 32.4 2.704 22.2 10.2 15 0.1400 68.0 65.0 0.028 2.84 3.137 20.7 12.0 32.7 2.727 22.4 10.4 16 0.1500 69.0 66.0 0.030 3.04 3.144 21.0 12.0 33.0 2.750 22.5 10.5 17 0.1600 71.0 68.0 0.032 3.25 3.150 21.6 12.0 33.6 2.799 22.8 10.8 18 0.1700 73.0 70.0 0.034 3.45 3.157 22.2 12.0 34.2 2.848 23.1 11.1 19 0.1900 74.0 71.0 0.039 3.85 3.170 22.4 12.0 34.4 2.866 23.2 11.2 20 0.2000 75.0 72.0 0.041 4.06 3.177 22.7 12.0 34.7 2.889 23.3 11.3 21 0.2100 76.0 73.0 0.043 4.26 3.184 22.9 12.0 34.9 2.911 23.5 11.5 22 0.2200 78.0 75.0 0.045 4.46 3.190 23.5 12.0 35.5 2.959 23.8 11.8 23 0.2300 79.0 76.0 0.047 4.67 3.197 23.8 12.0 35.8 2.981 23.9 11.9 24 0.2400 80.0 77.0 0.049 4.87 3.204 24.0 12.0 36.0 3.003 24.0 12.0 25 0.2600 82.0 79.0 0.053 5.27 3.218 24.6 12.0 36.6 3.046 24.3 12.3 -- 26 0.2800 83.0 80.0 0.057 5.68 3.232 24.8 12.0 36.8 3.063 24.4 12.4 27 0.2900 84.0 81.0 0.059 5.88 3.239 25.0 12.0 37.0 3.084 24.5 12.5 28 0.3100 85.0 82.0 0.063 6.29 3.253 25.2 12.0 37.2 3.101 24.6 12.6 29 0.3200 86.0 83.0 0.065 6.49 3.260 25.5 12.0 37.5 3.122 24.7 12.7 30 0.3300 87.0 84.0 0.067 6.69 3.267 25.7 12.0 37.7 3.143 24.9 12.9 31 0.3500 88.0 85.0 0.071 7.10 3.281 25.9 12.0 37.9 3.159 25.0 13.0 32 0.3700 89.0 86.0 0.075 7.51 3.295 26.1 12.0 38.1 3.175 25.0 13.0 33 0.3900 89.0 86.0 0.079 7.91 3.310 26.0 12.0 38.0 3.165 25.0 13.0 34 0.4100 90.0 87.0 0.083 8.32 3.325 26.2 12.0 38.2 3.181 25.1 13.1 35 0.4200 91.0 88.0 0.085 8.52 3.332 26.4 12.0 38.4 3.201 25.2 13.2 36 0.4300 92.0 89.0 0.087 8.72 3.339 26.7 12.0 38.7 3.221 25.3 13.3 37 0.4600 93.0 90.0 0.093 9.33 3.362 26.8 12.0 38.8 3.231 25.4 13.4 38 0.5000 94.0 91.0 0.101 10.14 3.392 26.8 12.0 38.8 3.236 25.4 13.4 39 0.5100 96.0 93.0 0.103 10.34 3.400 27.4 12.0 39.4 3.280 25.7 13.7 40 0.5200 95.0 92.0 0.105 10.55 3.407 27.0 12.0 39.0 3.250 25.5 13.5 41 0.5400 96.0 93.0 0.110 10.95 3.423 27.2 12.0 39.2 3.264 25.6 13.6 42 0.5600 97.0 94.0 0.114 11.36 3.439 27.3 12.0 39.3 3.278 25.7 13.7 43 0.5800 98.0 95.0 0.118 11.76 3.454 27.5 12.0 39.5 3.292 25.8 13.8 44 0.6200 99.0 96.0 0.126 12.58 3.487 27.5 12.0 39.5 3.295 25.8 13.8 45 0.6800 100.0 97.0 0.138 13.79 3.536 27.4 12.0 39.4 3.286 25.7 13.7 46 0.7000 101.0 98.0 0.142 14.20 3.552 27.6 12.0 39.6 3.299 25.8 13.8 47 0.7100 101.0 98.0 0.144 14.40 3.561 27.5 12.0 39.5 3.293 25.8 13.8 48 0.7200 102.0 99.0 0.146 14.60 3.569 27.7 12.0 39.7 3.311 25.9 13.9 49 0.7300 102.0 99.0 0.148 14.81 3.578 27.7 12.0 39.7 3.306 25.8 13.8 50 0.7400 102.0 99.0 0.150 15.01 3.586 27.6 12.0 39.6 3.300 25.8 13.8 UUM02007 B-3 17-18.xls PLATE B-UUM.3a GREGORYGEOTECHNICAL Report No. R02007 TRIAXIAL COMPRESSION MODULUS TEST REPORT Project No: CDM02007 Project: Trinity River Siphon Project Sample Location/Description: B-3,23-24 ft-SANDY LEAN CLAY(CL),dark brown Specimen Data: LL: 31 PL: 12 Pl: 19 -200 W 74 Effective Stress: 5.0 psi Test Type: UU Triaxial at Feld Moisture 20 18 -� 18 . . . .14 .� a b1z 4100 d10 j fA ..... � 8 G 8 4 +-- ;..; ' . ..i..i .i..i ' I-- ... ... ... ;. 2 0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 0.180 0.200 Strain s (inlin) Specimen Data initial final Diameter Height Moist soil&Tare: 92.54 g 92.54 g top 2.751 in Ht 1 5.733 in Dry soil and Tare : 83.58 g 83.58 g mid 2.756 in Ht 2 5.712 in Tare: 30.57 g 30.57 g bot 2.76 in Ht 3 5.708 in Moisture content: 16.90 % 16.90 % Mg 2.7E in Ht 4 5.898 in Weight: 1170.E g Height to Dia. Ratio: 2.07 Avg 5.71 in Change in Ht due to saturation : NA in Initial specimen vol : 558.33 cc Change in Ht due to consolidation : NA in At test specimen vol : 558.33 cc Change in pipet vol due to consolidation : NA cc Initial dry density: 111.96 pcf Saturation Parameter " B"= NA At test dry density: 111.9E pcf Modulus Values E}= 1426 psi EthyP= 1414 psi Es= 1228 psi V.= 0.50 V.= 0.50 EshyP= 707 psi Em= 260 psi (ES is @ 50%Max Av; Em is at Max Av, Max Aa<=5%Strain) - Es'= 819 psi E'hyp= 471 psi E'm= 174 psi I P.Pen.: 4.0 tsf P.Vane: NA hyp= modulus calculated from transformed hyperbolic-curve approximation Et= Initial Tan ES= Secant Em=Max Av<=5%Strain vc=Calculated Poisson's Ratio va=Assumed Poisson's Ratio used in E'calculations UUM02007 B-3 23-24.xis PLATE B-UUM.4 GREGORYGEOTECHNICAL Report No.R02007 TRIAx1AL COMPRESSION MODULUS TEST-READINGS DATA Cell Pressure: 5.0 psi Back Pressure: 0.0 psi I Effective Stress: 5.0 psi Diameter 1.96 in Area: 3.017 inA2 Ht. 3.92 in Weight: 375.3 g No. Def. Load U Load 6 s% Corr. ACT a3' al' al': a3' (in) Dial (psi) Ibs) in/in Area (psi) (psi) (psi) (psi) (psi) Units ' , in^2 1 0.0000 2.0 0.0 0.0 0.0 3.017 0.0 5.0 5.0 1.000 5.0 0.0 2 0.0100 13.0 11.0 0.003 0.26 3.025 3.6 5.0 8.6 1.727 6.8 1.8 3 0.0200 21.0 19.0 0.005 0.51 3.033 6.3 5.0 11.3 2.253 8.1 3.1 4 0.0300 26.0 24.0 0.008 0.77 3.040 7.9 5.0 12.9 2.579 8.9 3.9 5 0.0400 28.0 26.0 0.010 1.02 3.048 8.5 5.0 13.5 2.706 9.3 4.3 6 0.0500 31.0 29.0 0.013 1.28 3.056 9.5 5.0 14.5 2.898 9.7 4.7 7 0.0600 32.0 30.0 0.015 1.53 3.064 9.8 5.0 14.8 2.958 9.9 4.9 8 0.0700 33.0 31.0 0.018 1.79 3.072 10.1 5.0 15.1 3.018 10.0 5.0 9 0.0800 35.0 33.0 0.020 2.04 3.080 10.7 5.0 15.7 3.143 10.4 5.4 J4 10 0.0900 37.0 35.0 0.023 2.30 3.088 11.3 5.0 16.3 3.267 10.7 5.7 11 0.1000 37.0 35.0 0.026 2.55 3.096 11.3 5.0 16.3 3.261 10.7 5.7 12 0.1100 37.0 35.0 0.028 2.81 3.104 11.3 5.0 16.3 3.255 10.6 5.6 13 0.1200 38.0 36.0 0.031 3.06 3.112 11.6 5.0 16.6 3.313 10.8 5.8 14 0.1300 40.0 38.0 0.033 3.32 3.121 12.2 5.0 17.2 3.435 11.1 6.1 15 0.1400 40.0 38.0 0.036 3.57 3.129 12.1 5.0 17.1 3.429 11.1 6.1 16 0.1500 40.0 38.0 0.038 3.83 3.137 12.1 5.0 17.1 3.423 11.1 6.1 17 0.1600 41.0 39.0 0.041 4.08 3.146 12.4 5.0 17.4 3.480 11.2 6.2 18 0.1700 42.0 40.0 0.043 4.34 3.154 12.7 5.0 17.7 3.536 11.3 6.3 19 0.1900 42.0 40.0 0.048 4.85 3.171 12.6 5.0 17.6 3.523 11.3 6.3 20 0.2000 43.0 41.0 0.051 5.10 3.179 12.9 5.0 17.9 3.579 11.4 6.4 21 0.2100 43.0 41.0 0.054 5.36 3.188 12.9 5.0 17.9 3.572 11.4 6.4 22 0.2200 43.0 41.0 0.056 5.61 3.197 12.8 5.0 17.8 3.565 11.4 6.4 23 0.2300 43.0 41.0 0.059 5.87 3.205 12.8 5.0 17.8 3.558 11.4 6.4 24 0.2400 44.0 42.0 0.061 6.12 3.214 13.1 5.0 18.1 3.614 11.5 6.5 25 0.2500 45.0 43.0 0.064 6.38 3.223 13.3 5.0 18.3 3.669 11.7 6.7 .� 26 0.2600 47.0 45.0 0.066 6.63 3.232 13.9 5.0 18.9 3.785 12.0 7.0 27 0.2700 47.0 45.0 0.069 6.89 3.240 13.9 5.0 18.9 3.777 11.9 6.9 28 0.2800 47.0 45.0 0.071 7.14 3.249 13.8 5.0 18.8 3.770 11.9 6.9 29 0.2900 48.0 46.0 0.074 7.40 3.258 14.1 5.0 19.1 3.824 12.1 7.1 30 0.3000 48.0 46.0 0.077 7.65 3.267 14.1 5.0 19.1 3.816 12.0 7.0 31 0.3100 48.0 46.0 0.079 7.91 3.276 14.0 5.0 19.0 3.808 12.0 7.0 32 0.3200 48.0 46.0 0.082 8.16 3.285 14.0 5.0 19.0 3.800 12.0� 7.0 33 0.3300 48.0 46.0 0.084 8.42 3.295 14.0 5.0 19.0 3.793 12.0 7.0 34 0.3400 49.0 47.0 0.087 8.67 3.304 14.2 5.0 19.2 3.845 12.1 7.1 35 0.3500 49.0 47.0 0.089 8.93 3.313 14.2 5.0 19.2 3.837 12.1 7.1 36 0.3700 50.0 48.0 0.094 9.44 3.332 14.4 5.0 19.4 3.881 12.2 7.2 37 0.4200 51.0 49.0 0.107 10.71 3.379 14.5 5.0 19.5 3.900 12.3 7.3 38 0.4400 52.0 50.0 0.112 11.22 3.399 14.7 5.0 19.7 3.942 12.4 7.4 .,, 39 0.4700 53.0 51.0 0.120 11.99 3.428 14.9 5.0 19.9 3.975 12.4 7.4 40 0.5100 54.0 52.0 0.130 13.01 3.468 15.0 5.0 20.0 3.998 12.5 7.5 41 0.5600 55.0 53.0 0.143 14.29 3.520 15.1 5.0 20.1 4.011 12.5 7.5 42 0.5800 56.0 54.0 0.148 14.80 3.541 15.2 5.0 20.2 4.050 12.6 7.6 43 0.6000 57.0 55.0 0.153 15.31 3.562 15.4 5.0 20.4 4.088 12.7 7.7 44 0.6200 56.0 54.0 0.158 15.82 3.584 15.1 5.0 20.1 4.013 12.5 7.5 45 0.6300 57.0 55.0 0.161 16.07 3.595 15.3 6.0 20.3 4.060 12.6 7.6 ' 46 0.6400 58.0 56.0 0.163 16.33 3.606 15.5 5.0 20.5 4.106 12.8 7.8 47 0.6500 59.0 57.0 0.166 16.58 3.617 15.8 6.0 20.8 4.152 12.9 7.9 48 0.6700 58.0 56.0 0.171 17.09 3.639 15.4 5.0 20.4 4.078 12.7 7.7 49 0.6800 59.0 57.0 0.173 17.35 3.650 15.6 5.0 20.6 4.123 12.8 7.8 50 0.6900 59.0 67.0 0.176 17.60 3.662 15.6 5.0 20.6 4.113 12.8 7.8 UUM02007 B-3 23-24.xis PLATE B-UUM.4a GREGORY GEOTECHNICAL Report No. R02007 TRIAXIAL COMPRESSION MODULUS TEST REPORT Project No: CDM02007 Project: Trinity River Siphon Project Sample Location/Description B-4,2-4 ft-SANDY LEAN CLAY(CL), brown with medium gray sand seams Specimen Data: LL: 33 PL:- 13 PI: 20 -200 W 66 Effective Stress: 5.0 psi Test Type: UU Triaxial at Field Moisture 90 ' .............................. I...,....... ....... I....... I....,....... I....... I....... ....... —.1-7........1-7--- ..... .........................I...I......... ....... .......... ........I... .......1-1.......I- ---- --- --- 80 — .. ... ....... ............ ------- ------- ------- ....... .......................... ..........I...I...I....... .......I.- ... ......I.... ..I... .......I....... ....... ....... ...... ................................... ------------------- ....... ------- ......*------ ........................... ....... ....... .............%....................... ...................................... 70 - ............................... ...... ....... . . . . . . . . . . . . . . . * - - I . . . . I . . . . . . . --- --------- ....... ...............................L....... ........... ........... .............................. .................... ----------- ........ .......................... ................... ................................ . . . . . . . . . . . I I I I I .. ... ........... ------- ------- ....... .......11 ,o"-60 ........... ...... ------------ ........1"'.1 ............1-11-7-.1-11-1......... CL ... ........ ------------ ................................... .........I---- LL........ -.1.......L...I-.L...L.......L........ ....... .......... ................... ....... ...... ....... -4150 ................ ... ....................... ............ .................... ------ U) . . . . . . . . U) -- ------- ------- ------- ------- ------- ............ ...................I ................. ................................ L...-.,.......L---L.....................L..............................L... ............ ........ ............ .. ------- ------- ......... ...........7................................................................... ............ U)40 .. ........... ....... ........... ....... ... ....................... ----------- ....... ------- I . . . . . . . . . . . . . . . . . . . . . . . . 4....... ....... .......I....I ... ....1- -.1.......... .......... ...I---- ---------- - ........ > ... 030 - ........... ........... ------- .... ................................. .......I........ ----------------------- ........................... ........... ........... ............ .. ... ............ .... ... ... ............ ............. .......................................L........L.............L............. ..................... ................... 20 - .................. ........... ....... .. ........... ................... ....... ................... ............... ............... ..................... ... ............ 4 ....... . . . . •. . . . . . . . . . . . . . I . . . . . . .• . . . -----------• --- 10 .................. ------- ------- ....... ....... ....... ------ ............. ... . ........... ........... ... ........... ....... ....... ........... ........ ... 0 0.000 0.020 0.040 0.060 0.080 0.100 0.120 0.140 0.160 Strain s (in/in) Specimen Data initial final Diameter Height Moist soil&Tare : 92.54 g 92.54 g top 2.751 in Ht 1 5.733 in Dry soil and Tare: 83.58 g 83.58 g mid 2.756 in Ht 2 5.712 In Tare : 30.57 9 30.57 9 bot 2.76 in Ht 3 5.708 in Moisture content: 16.90 % 16.90 % Avg 2.76 in Ht 4 5.698 in Weight: 1170.6 g Height to Dia. Ratio: 2.07 Avg 5.71 in Change in Ht due to saturation : NA in Initial specimen vol : 558.33 cc Change in Ht due to consolidation NA in At test specimen vol 558.33 cc Change in pipet vol due to consolidation NA cc Initial dry density: 111.96 pef Saturation Parameter " B NA At test dry density: 111.96 pcf Modulus Values Et= 6069 psi Ethyp= 6617 psi Er,= 3295 psi V.= 0.24 V.= 0.30 E,hyp= 3309 psi Em= 1586 psi (E,is @ 50%Max Acy; E,is at Max Aa, Max Aa<=5%Strain) Er,'= 2535 Psi E'hyp= 2545 psi E'm= 1220 psi I P.Pon.: 4.5tsFFV;;;7 NA hyp=modulus calculated from transformed hyperbolic-curve approximation Et= Initial Tan E,= Secant E,=Max Acr<=5%Strain v,=Calculated Poisson's Ratio v.=Assumed Poisson's Ratio used in E'calculations UUM02007—B-4-2-4.xls PLATE B-UUM.5 GREGORY GEOTECHNICAL Report No.R02007 TRIAXIAL COMPRESSION MODULUS TEST-READINGS DATA Cell Pressure: 5.0 psi Back Pressure: 0.0 psi Effective Stress: 5.0 psi Diameter : 2.74 in Area: 5.896 in"2 Ht. 5.69 in Weight: 1233.0 g No. Def. Load U Load 8 e% Corr. Da a3' al' al':a3' p Q _ (in) Dial (psi) (Ibs) in/in) Area (psi) (psi) (psi) (psi) (psi) in^2 1 0.0000 5.0 0.0 0.0 0.0 5.896 0.0 5.0 5.0 1.000 5.0 0.0 2 0.0100 68.0 63.0 0.002 0.18 5.907 10.7 5.0 15.7 3.133 10.3 5.3 3 0.0200 114.0 109.0 0.004 0.35 5.917 18.4 5.0 23.4 4.684 14.2 9.2 4 0.0300 150.0 145.0 0.005 0.53 5.928 24.5 5.0 29.5 5.892 17.2 12.2 5 0.0400 178.0 173.0 0.007 0.70 5.938 29.1 5.0 34.1 6.827 19.6 14.6 f 6 0.0500 201.0 196.0 0.009 0.88 5.949 32.9 5.0 37.9 7.590 21.5 16.5 7 0.0600 226.0 221.0 0.011 1.05 5.959 37.1 5.0 42.1 8.417 23.5 18.5 8 0.0700 247.0 242.0 0.012 1.23 5.970 40.5 5.0 45.5 9.107 25.3 20.3 9 0.0800 266.0 261.0 0.014 1.41 5.981 43.6 5.0 48.6 9.728 26.8 21.8 10 0.0900 282.0 277.0 0.016 1,58 5.991 46.2 5.0 51.2 10.247 28.1 23.1 11 0.1000 299.0 294.0 0.018 1.76 6.002 49.0 5.0 54.0 10.797 29.5 24.5 12 0.1100 314.0 309.0 0.019 1.93 6,013 51.4 5.0 56.4 11.278 30.7 25.7 13 0.1200 327.0 322.0 0.021 2.11 6.023 53.5 5.0 58.5 11.691 31.7 26.7 14 0.1300 342.0 337.0 0.023 2.28 6.034 55.8 5.0 60.8 12.169 32.9 27.9 15 0.1400 353.0 348.0 0.025 2.46 6.045 57.6 5.0 62.6 12.513 33.8 28.8 16 0.1500 364.0 359.0 0.026 2.64 6.056 59.3 5.0 64.3 12.856 34.6 29.6 17 0.1700 387.0 382.0 0.030 2.99 6.078 62.8 5.0 67.8 13.570 36.4 31.4 18 0.1900 406.0 401.0 0.033 3.34 6.100 65.7 5.0 70.7 14.147 37.9 32.9 19 0.2100 426.0 421.0 0.037 3.69 6.122 68.8 5.0 73.8 14.753 39.4 34.4 20 0.2300 442.0 437.0 0.040 4.04 6.145 71.1 5.0 76.1 15.223 40.6 35.6 21 0.2500 457.0 452.0 0.044 4.39 6.167 73.3 5.0 78.3 15.658 41.6 36.6 22 0.2700 471.0 466.0 0.047 4.75 6.190 75.3 5.0 80.3 16.056 42.6 37.6 23 0.2900 482.0 477.0 0.051 5.10 6.213 76.8 5.0 81.8 16.355 43.4 38.4 24 0.3100 494.0 489.0 0.054 5.45 6.236 78.4 5.0 83.4 16.683 44.2 39.2 25 0.3200 499.0 494.0 0.056 5.62 6,248 79.1 5.0 84.1 16.813 44.5 39.5 26 0.3400 509.0 504.0 0.060 5.98 6.271 80.4 5.0 85.4 17.074 45.2 40.2 27 0.3600 517.0 512.0 0.063 6.33 6.295 81.3 5.0 86.3 17.268 45.7 40.7 28 0.3800 525.0 520.0 0.067 6.68 6.318 82.3 5.0 87.3 17.460 46.1 41.1 29 0.3900 528.0 523.0 0.069 6.85 6.330 82.6 5.0 87.6 17.524 46.3 41.3 30 0.4000 531.0 526.0 0.070 7.03 6.342 82.9 5.0 87.9 17.587 46.5 41.5 31 0.4100 534.0 529.0 0.072 7.21 6.354 83.3 5.0 88.3 17.650 46.6 41.6 32 0.4200 537.0 532.0 0.074 7.38 6.366 83.6 5.0 88.6 17.713 46.8 41.8 33 0.4300 541.0 536.0 0.076 7.56 6.378 84.0 5.0 89.0 17.806 47.0 42.0 34 0.4400 543.0 538.0 0.077 7.73 6.391 84.2 5.0 89.2 17.837 47.1 42.1 35 0.4500 545.0 540.0 0.079 7.91 6.403 84.3 5.0 89.3 17.868 47.2 42.2 36 0.4600 546.0 541.0 0.081 8.08 6.415 84.3 5.0 89.3 17.867 47.2 42.2 37 0.4700 548.0 543.0 0.083 8.26 6.427 84.5 5.0 89.5 17.897 47.2 42.2 38 0.4800 550.0 545.0 0.084 8.44 6.440 84.6 5.0 89.6 17.926 47.3 42.3 39 0.4900 552.0 547.0 0.086 8.61 6.452 84.8 5.0 89.8 17.956 47.4 42.4 40 0.5000 552.0 547.0 0.088 8.79 6.465 84.6 5.0 89.6 17.923 47.3 42.3 41 0.5100 553.0 548.0 0.090 8.96 6.477 84.6 5.0 89.6 17.921 47.3 42.3 42 0.5200 552.0 547.0 0.091 9.14 6.490 84.3 5.0 89.3 17.858 47.1 42.1 43 0.5300 551.0 546.0 0.093 9.31 6.502 84.0 5.0 89.0 17.795 47.0 42.0 44 0.5400 550.0 545.0 0.095 9.49 6.515 83.7 5.0 88.7 17.731 46.8 41.8 45 0.5500 548.0 543.0 0.097 9.67 6.527 83.2 5.0 88.2 17.638 46.6 41.6 46 0.5600 546.0 541.0 0.098 9.84 6.540 82.7 5.0 87.7 17.544 46.4 41.4 47 0.5700 544.0 539.0 0.100 10.02 6.553 82.3 5.0 87.3 17.451 46.1 41.1 48 0.5800 542.0 537.0 0.102 10.19 6.566 81.8 5.0 86.8 17.358 45.9 40.9 49 0.5900 540.0 535.0 0.104 10.37 6.579 81.3 5.0 86.3 17.265 45.7 40.7 50 0.6000 537.0 532.0 1 0.105 10.54 6.592 80.7 5.0 85.7 17.142 45.4 40.4 UUM02007 B-4 2-4.xis PLATE B-UUM.5a GREGORYGEOTECHNICAL Report No. R02007 TRIAXIAL COMPRESSION MODULUS TEST REPORT Project No: CDM02007 Project: Trinity River Siphon Project Sample Location/Description: B-4, 15-16 ft-SANDY LEAN CLAY(CL), brown with medium gray sand seams Specimen Data: LL: 32 PL: 14 PI: 18 -200 W 66 Effective Stress: 11.0 psi Test Type: UU Trlaxial at Field Moisture 30 PI ;. . ; . . .......L._- --- --- ....... --.L...L. .L...L... ...L---L•--L---}... ...L...L...L...L....... t.... ............... o.20 c. b a _ 15 . . . . . . . . . . . . . rn 010 . .� -r. r. •. .-. .•. .}...i... 5 ---}-- _- _ .L_..}....... .................... --- -- ...4........ }.- . .L.. 0.000 0.020 0.040 0.080 0.080 0.100 L0.1201 0.1401 0.160 Strain a (in/in) Specimen Data initial final Diameter Height Moist soil&Tare: 92.54 g 92.54 g top 2.751 in Ht 1 5.733 in Dry soil and Tare: 83.58 g 83.58 g mid 2.756 in Ht 2 5.712 in Tare : 30.57 g 30.57 g bot 2.76 in Ht 3 5.708 in Moisture content: 16.90 % 16.90 % Avg 2.76 in Ht 4 5.698 in Weight: 1170.6 g Height to Dia. Ratio: 2.07 Avg 5.71 in Change in Ht due to saturation : NA in Initial specimen vol : 558.33 cc Change in Ht due to consolidation : NA in At test specimen vol : 558.33 cc Change in pipet vol due to consolidation : NA cc Initial dry density: 111.96 pcf Saturation Parameter " B"= NA At test dry density: 111.96 pcf Modulus Values Et= 2299 psi Exhyp= 1822 psi ES= 988 psi V.= 0.42 V.= 0.42 E,hyp= 911 psi Em= 443 psi (E,is @ 50%Max Aa; E,"is at Max Aa,Max Aa<=5%Strain) Es'= 695 psi E'hyp= 640 psi E'm= 312 psi I P.Pen.: NA P.Vane: NA hyp=modulus calculated from transformed hyperbolic-curve approximation Et= Initial Tan E,=Secant Em=Max Aa<=5%Strain v,=Calculated Poisson's Ratio v,=Assumed Poisson's Ratio used in E'calculations UUM02007 B-4 15-16.xis PLATE B-UUM.6 �- GREGORY GEOTECHNICAL Report No.R02007 TRIAXIAL COMPRESSION MODULUS TEST-READINGS DATA Cell Pressure: 11.0 psi Back Pressure: 0.0 psi Effective Stress: 11.0 psi _ Diameter : 2.76 In Area: 5.983 1n^2 Ht. 5.74 In Weight: 1144.8 g No. Def. Load U Load 8 s% Corr. Aa aT al' al':crT (in) Dial (psi) (lbs) in/in Area (psi) (psi) si (psi) (psi) Units in^2 1 0.0000 3.0 0.0 0.0 0.0 5.983 0.0 11.0 11.0 1.000 11.0 0.0 2 0.0100 27.0 24.0 0.002 0.17 5.993 4.0 11.0 15.0 1.364 13.0 2.0 3 0.0200 40.0 37.0 0.003 0.35 6.004 6.2 11.0 17.2 1.560 14.1 3.1 4 0.0300 48.0 45.0 0.005 0.52 6.014 7.5 11.0 18.5 1.680 14.7 3.7 5 0.0400 56.0 53.0 0.007 0.70 6.025 8.8 11.0 19.8 1.800 15.4 4.4 6 0.0500 63.0 60.0 0.009 0.87 6.035 9.9 11.0 20.9 1.904 16.0 5.0 7 0.0600 70.0 67.0 0.010 1.05 6.046 11.1 11.0 22.1 2.007 16.5 5.5 8 0.0700 76.0 73.0 0.012 1.22 6.057 12.1 11.0 23.1 2.096 17.0 6.0 9 0.0800 81.0 78.0 0.014 1.39 6.067 12.9 11.0 23.9 2.169 17.4 6.4 i 101 0.0900 86.0 83.0 0.016 1.57 6.078 13.7 11.0 24.7 2.241 17.8 6.8 11 0.1000 91.0 88.0 0.017 1.74 6.089 14.5 11.0 25.5 2.314 18.2 7.2 12 0.1100 96.0 93.0 0.019 1.92 6.100 15.2 11.0 26.2 2.386 18.6 7.6 13 0.1200 100.0 97.0 0.021 2.09 6.111 15.9 11.0 26.9 2.443 18.9 7.9 14 0.1300 104.0 101.0 0.023 2.26 6.121 16.5 11.0 27.5 2.500 19.2 8.2 15 0.1400 107.0 104.0 0.024 2.44 6.132 17.0 11.0 28.0 2.542 19.5 8.5 16 0.1500 111.0 108.0 0.026 2.61 6.143 17.6 11.0 28.6 2.598 19.8 8.8 17 0.1600 114.0 111.0 0.028 2.79 6.154 18.0 11.0 29.0 2.640 20.0 9.0 18 0.1700 116.0 113.0 0.030 2.96 6.165 18.3 11.0 29.3 2.666 20.2 9.2 19 0.1900 120.0 117.0 0.033 3.31 6.188 18.9 11.0 29.9 2.719 20.5 9.5 20 0.2000 122.0 119.0 0.035 3.48 6.199 19.2 11.0 30.2 2.745 20.6 9.6 21 0.2100 126.0 123.0 0.037 3.66 6.210 19.8 11.0 30.8 2.801 20.9 9.9 22 0.2200 127.0 124.0 0.038 3.83 6.221 19.9 11.0 30.9 2.812 21.0 10.0 23 0.2300 131.0 128.0 0.040 4.01 6.233 20.5 11.0 31.5 2.867 21.3 10.3 24 0.2400 132.0 129.0 0.042 4.18 6.244 20.7 11.0 31.7 2.878 21.3 10.3 25 0.2500 .134.0 131.0 0.044 4.36 6.255 20.9 11.0 31.9 2.904 21.5 10.5 26 0.2600 1137.0 134.0 0.045 4.53 6.267 21.4 11.0 32.4 2.944 21.7 10.7 27 0.2700 138.0 135.0 0.047 4.70 1 6.278 21.5 11.0 32.5 2.955 21.8 10.8 28 0.2800 139.0 136.0 0.049 4.88 6.290 21.6 11.0 32.6 2.966 21.8 10.8 29 0.2900 142.0 139.0 0.051 5.05 6.301 22.1 11.0 33.1 3.005 22.0 11.0 30 0.3000 144.0 141.0 0.052 5.23 6.313 22.3 11.0 33.3 3.031 22.2 11.2 31 0.3100 145.0 142.0 0.054 5.40 6.324 22.5 11.0 33.5 3.041 22.2 11.2 _ 32 0.3200 147.0 144.0 0.056 5.57 6.336 22.7 11.0 33.7 3.066 22.4 11.4 33 0.3300 148.0 145.0 0.057 5.75 6.348 22.8 11.0 33.8 3.077 22.4 11.4 34 0.3400 150.0 147.0 0.059 5.92 6.360 23.1 11.0 34.1 3.101 22.6 11.6 35 0.3500 151.0 148.0 0.061 6.10 6.371 23.2 11.0 34.2 3.112 22.6 11.6 36 0.3600 153.0 150.0 0.063 6.27 6.383 23.5 11.0 34.5 3.136 22.7 11.7 37 0.3700 154.0 151.0 1 0.064 6.45 6.395 23.6 11.0 34.6 3.147 22.8 11.8 38 0.3800 155.0 152.0 0.066 6.62 6.407 23.7 11.0 34.7 3.157 22.9 11.9 39 0.3900 157.0 154.0 0.068 6.79 6.419 24.0 11.0 35.0 3.181 23.0 12.0 40 0.4000 159.0 156.0 0.070 6.97 6.431 24.3 11.0 35.3 3.205 23.1 12.1 41 0.4100 159.0 156.0 0.071 7.14 6.443 24.2 11.0 35.2 3.201 23.1 12.1 42 0.4200 160.0 157.0 0.073 7.32 6.455 24.3 11.0 35.3 3.211 23.2 12.2 43 0.4300 161.0 158.0 0.075 7.49 6.467 24.4 11.0 35.4 3.221 23.2 12.2 44 0.4400 162.0 159.0 0.077 7.67 6.480 24.5 11.0 35.5 3.231 23.3 12.3 45 0.4500 164.0 161.0 0.078 7.84 6.492 24.8 11.0 35.8 3.255 23.4 12.4 46 0.4600 165.0 162.0 0.080 8.01 6.504 24.9 11.0 35.9 3.264 23.5 12.5 47 0.4700 166.0 163.0 0.082 8.19 6.516 25.0 11.0 36.0 3.274 23.5 12.5 48 0.4800 167.0 164.0 0.084 8.36 6.529 25.1 11.0 36.1 3.284 23.6 12.6 49 0.4900 168.0 165.0 0.085 8.54 6.541 25.2 11.0 36.2 3.293 23.6 12.6 50 0.5200 169.0 166.0 0.091 9.06 6.579 1 25.2 11.0 36.2 3.294 1 23.6 12.6 UUM02007 B-4_15-16.xls PLATE B-UUM.6a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 40.0 I I I 1 I 1 1 1 I I 1 I 1 I I I r— --1--I—_r_T— Y J. i- -_ - -1-j--1--L- -i- --L--L- -J- I -1--I-1- 1 1 1 I t I I I I 1 I 1 I I I 1 30.0 1 I t I 1 I I I 1 I I I I I I — LU I 1 1 I I I 1 1 1 1 1 1 1 1 1 I —'1'—J--1--L— —1—J--1--L— —'1--1--L—L— —J--i--L—a'- 1 I 1 I I 1 I 1 I 1 1 I I I I I � r-�--1--r- -Y—�--r-r- -Y--t--r-r- -�--1--r-r- W 20.IJ ` I I I 1 1 I I 1 1 I 1 1 I I I I N 1 I 1 1 I I I 1 1 I 1 1 I 1 1 1 N T—Y--I--r- —Y--1--r-r- —'1--I--r—t— —7--I--r—t— W �y I—1--I--I w _1_-1 _L_ _1_J__I—_L— _J_-1--L_1— _J--1--L_1_ IL 10.0 O I 1 1 I 1 I I 1 1 1 1 1 I 1 1 I —t—Y--I--1-- —Y--1--I--r- -Y--I"-r-t- --1--1--r—t— I I 1 1 I 1 I I I I I 1 I 1 1 1 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 13.8 Dry Density pcf 120.5 Diameter in 1.98 Height in 5.01 Heigth/Diameter Ratio 2.53 Calculated Saturation % 74.7 Calculated Void Ratio 0.55 Assumed Specific Gravity 3.00 Failure Strain % 1.26 Unconfined Compressive Strength ksf 28.90 Undrained Shear Strength ksf 14.45 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-3,56-57 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE, gray PROJECT NO: CDM02007 CLIENT: CDM DATE: 4/23/03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.18 NA NA NA NA - UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE, gray Dia. : 1.98 in Ht. : 5.01 in SAMPLE LOCATION: B-3,56-57 It Area: 3.070 In"2 Weight: 553.5 g No. Def. Load Load s 8% Corr. UC UC UC UC UC/Pa R (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.070 0.0 0 0.000 0.0 0.00 2 0.0050 56.00 56.0 0.001 0.10 3.073 18.2 2624 2.624 125.7 1.24 3 0.0100 108.00 108.0 0.002 0.20 3.076 35.1 5056 5.056 242.1 2.39 4 0.0110 187.00 187.0 0.002 0.22 3.077 60.8 8753 8.753 419.1 4.13 5 0.0200 264.00 264.0 0.004 0.40 3.082 85.7 12335 12.335 590.6 5.83 6 0.0250 346.00 346.0 0.005. 0.50 3.085 112.2 16150 16.150 773.3 7.63 7 0.0300 418.00 418.0 0.006 0.60 3.088 135,4 19491 19.491 933.3 9.21 8 0.0350 475.00 475.0 0.007 0.70 3.091 153.7 22126 22.126 1059.4 10.45 9 0.0400 527.00 527.0 0.008 0.80 3.094 170.3 24524 24.524 1174.2 11.59 10 0.0450 573.00 573.0 0.009 0.90 3.098 185.0 26638 26.638 1275.5 12.58 11 0.0500 604.00 604.0 0.010 1.00 3.101 194.8 28050 28.050 1343.1 13.25 12 0.0550 622.00 622.0 0.011 1.10 3.104 200.4 28857 28.857 1381.7 13.63 13 0.0630 624.00 624.0 0.013 1.26 3.109 200.7 28903 28.903 1383.9 13.65 14 0.0640 622.00 622.0 0.013 1.28 3.109 200.0 28805 28.805 1379.2 13.61 GREGORY GEOTECHNICAL UC-02007-B-3,56-57.x1s PLATE: B-UC.18a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 60.0 I I I I I I 1 I I I I I I I 1 1 -!-'-!--'-- -!-!--'--'-- -'-'--!--- -!--'--!-=- 1 i 1 I 1 1 1 I I I I I I 1 I 1 I I 1 1 1 I I t t I I I J I 1 I _1-J--1--L- _J__I__l._1_ _ _-1--L_1_ Y I I I t 1 I I I 1 1 I I 1 1 I I I I t 1 I I 1 I I I t I I I 1 45.000) 1 1 I I I 1 I 1 1 I 1 I I I 1 I I I I 1 1 1 I I I I 1 I I I I I +-i--I--r— --F-1--1"-r- -i--1--r-t- -1--1--r-+- 1 i I 1 t I I I I I 1 I I 1 1 I I I I I 1 I I 1 I I 1 I 1 I I I I 30.0 N 1 I I I I I I I 1 1 1 I I 1 I I W 1 I I I I 1 I I 1 1 I I I I I I LL 1 I I 1 I I I I I 1 I I I I I 1 Q. I I 1 I I I f I I I 1 I I 1 I 1 0 15.0 1 I I 1 I 1 1 I I I 1 I I I I I 1 I I I I I I I 1 I 1 I I I I I U -T--1--1--r- -7-1--r-r- -'�--1--r-r- -1--I--r-T- I I I t 1 I I I 1 I I I I I I I 1 ---------- ----- ---------- 1 I 1 1 �"�" I "I I I "�'� 1 1 I I I 1 I I I 1 1 I I 1 I 1 I 1 1 1 0.0 0 5 10 15 20 AXIAL STRAIN- % SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 13.4 Dry Density pcf 124.3 Diameter in 1.96 Height in 4.26 Heigth/Diameter Ratio 2.18 Calculated Saturation % 79.5 Calculated Void Ratio 0.51 Assumed Specific Gravity 3.00 Failure Strain % 0.99 Unconfined Compressive Strength ksf 48.11 Undrained Shear Strength ksf 24.06 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-3,57-58 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE, gray PROJECT NO: CDM02007 -- CLIENT: CDM DATE: 4/23103 LL: PL: Pi : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.19 - NA NA NA NA UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE, gray Dia. : 1.96 in Ht. : 4.25 in SAMPLE LOCATION: B-3,57-58 ft Area: 3.011 In"2 Weight: 474.5 g No. Def. Load Load 8 8% Corr. UC UC UC UC UC/Pa - (in) Reading (Ibs) Inrn Area Stress Stress Stress Stress Normalized _Data Readings InA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.011 0.0 0 0.000 0.0 0.00 2 0.0050 88.00 88.0 0.001 0.12 3.015 29.2 4204 4.204 201.3 1.99 3 0.0100 253.00 253.0 0.002 0.23 3.018 83.8 12071 12.071 578.0 5.70 4 0.0150 503.00 503.0 0.004 0.35 3.022 166.5 23971 23.971 1147.8 11.32 5 0.0200 686.00 686.0 0.005 0.47 3.025 226.8 32653 32.653 1563.5 15.43 -- 6 0.0250 815.00 815.0 0.006 0.59 3.029 269.1 38748 38.748 1855.3 18.30 7 0.0300 902.00 902.0 0.007 0.70 3.032 297.5 42834 42.834 2051.0 20.24 8 0.0350 972.00 972.0 0.008 0.82 3.036 320.2 46103 46.103 2207.5 21.78 + 9 0.0400 1010.00 1010.0 0.009 0.94 3.040 332.3 47849 47.849 2291.1 22.60 10 0.0420 1016.00 1016.0 0.010 0.99 3.041 334.1 48110 48.110 2303.6 22.73 11 0.0440 1002.00 1002.0 0.010 1.03 3.042 329.3 47425 47.425 2270.8 22.40 ILI GREGORYGEOTECHNICAL LIC-02007-13-3.57-58_As PLATE: B-UC.19a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 40.0 -1-J--I-_ - -1-J-L L- -J--I--I--1- -J--i--L-1- 1 1-4--1--1- -4--I--1--L- -4--I--I--4.- --I- 30.0 -I--L-+_ 1 I 1 I I I I I I I I 1 I 1 I I V.. r-�--I--r- -r-�--I--r- -�--I--r-r- -�--1--r-r- Y 1-�-�--I-- -1-J--I--L- -1-�--1--1- -J--I--L_1_ 1 I I I 1 I 1 I 1 1 I 1 I I 1 I 1 1 I 1 I 1 I I 1 1 I I I 1 1 I I W 1 1 1 I i I I I I 1 1 1 1 I I I �'-J--1--1-- -1--1--1--L-- -4--1--1--L- --I--i--L--1_ I I I I I 1 I I I I I I I I I I N T-�--I--r- -Y--I--r-r- -�--1--r-r- --1--r-r-r- W 20.0 I I I I I I I I I I I I I I 1 I _ ` N -t-1--I--r- -Y-ti--I--r- -1--I--r-t- -ti--1--r-T- LU �y -I-I--I--I I I 1 I I 1- 1 I 1 I 1 I w _1_J--1-_L- _1_J_-I-_L_ _J_-I__L-L_ _J--I-_L-1_ n. t t 1 1 1 t 1 1 I I I 1 I ! 1 10.0 O 1 1 1 I I I V _1_J_-I--L_ _1_J-'-I-_L_ _J_-I-_L_L- _J_-I-_L-1_ 1 1 1 1 1 1 1 I 1 I I 1 I 1 I I -t-y--I--r- -Y-ti--1--I-- -Y--I--r-t- -ti--I--r-t- 1 1 I I I 1 i I I 1 I 1 I I I I 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 12.7 Dry Density pcf 123.4 Diameter in 1.93 Height in 4.44 Heigth/Diameter Ratio 2.30 Calculated Saturation % 73.6 Calculated Void Ratio 0.52 Assumed Specific Gravity 3.00 Failure Strain % 0.68 Unconfined Compressive Strength ksf 37.03 Undrained Shear Strength ksf 18.51 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-3,58-59 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE, gray PROJECT NO: CDMO2007 '- CLIENT. CDM DATE: 4/23/03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.20 NA I NA I NA NA UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE, gray Dia. : 1.93 in Ht. : 4.44 in SAMPLE LOCATION: B-3,58-59 ft Area: 2.916 in'12 Weight: 472.3 g No. Def. Load Load 9 S% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 2.916 0.0 0 0.000 0.0 0.00 2 0.0050 62.00 62.0 0.001 0.11 2.920 21.2 3058 3.058 146.4 1.44 3 0.0100 174.00 174.0 0.002 0.23 2.923 59.5 8572 8.572 410.4 4.05 4 0.0150 333.00 333.0 0.003 0.34 2.926 113.8 16386 16.386 784.6 7.74 5 0.0200 531.00 531.0 0.005 0.45 2.930 181.3 26100 26.100 1249.7 12.33 6 0.0250 683.00 683.0 0.006 0.56 2.933 232.9 33533 33.533 1605.6 15.84 7 0.0300 755.00 755.0 0.007 0.68 2.936 257.1 37026 37.026 1772.9 17.49 8 0.0350 704.00 704.0 0.008 0.79 2.940 239.5 34486 34.486 1651.3 16.29 GREGORY GEOTECHNICAL UC-02007-B-3.58-59-xis PLATE: B-UC.20a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 100.0 I 1 I 1 1 1 I 1 I 1 1 1 I I I 1 I I 1 I I I I 1 I I I I I 1 1 1 I I 1 I 1 I 1 I t I I 1 1 I I 75.0 I 1 1 1 1 1 I 1 I 1 1 1 -r-T-1-'1-- -r-r-T-1----r-r-r-1- --1I"Ir-1r-r' - - - -- -L- -�- ----1--L- -�- - --� I 1 1-L-�- I I t 1 1 I I 1 1 1 1 1 1 1-4-J--1 1 I Cn r-t--1--1-- -r-r-t--1----r-r-t-t- --r-fr.-r-r- w 50.0 > 1-J-J--1----1'-1-;--4 -1--L_1-J- --1--�'-1--1- � I I I 1 I I I 1 1 1 1 I I I I I � r-t-1--1-- -r-t-t--1----r-r-r--t- --r-r-r-t- -1 - 1- - ----1 - 1 -1- 1 --1--1 -I 1- - --1 -1 - 1 - i T 1 I i T 1 i-- I r i-i 1 i i i L_1_1_J-___L-L_1-J_ Cd 1 I I I I I I I I I 1 1 1 1 1 I c 25.0 1 I I i I I I 1 1 1 I 1 I i I t -�-i-i--,-- -r-�- - ----j-r-�-1- --�-�-r-T- U _1_1_J__I-_ _L_1_1_J-__-L-L_1-.1 __I__L_L_1_ I I 1 1 1 1 I 1 I I I 1 I 1 I I -t-1-'1--I-- -r-t-1--I----r-r-t-t- --I--r-r-t- 1 I I 1 I I 1 I I I 1 1 1 I 1 1 0.0 0 5 10 15 20 AXIAL STRAIN- % SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 12.2 Dry Density pcf 127.9 Diameter in 1.97 Height in 4.93 Heigth/Diameter Ratio 2.50 Calculated Saturation % 78.7 Calculated Void Ratio 0.46 Assumed Specific Gravity 3.00 Failure Strain % 1.52 Unconfined Compressive Strength ksf 84.66 Undrained Shear Strength ksf 42.33 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-3,64-65 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE,light gray PROJECT NO: CDM02007 CLIENT: CDM DATE: 4123/03 LL: PL: PI : Percent < 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.21 NA NA NA NA UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE,light gray Dia. : 1.97 in Ht. : 4.93 in SAMPLE LOCATION: B-3,64-65 ft Area: 3.060 in"2 Weight: 568.5 g No. Def. Load Load 8 6% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.060 0.0 0 0.000 0.0 0.00 2 0.0050 131.00 131.0 0.001 0.10 3.064 42.8 6158 6.158 294.8 2.91 3 0.0100 318.00 318.0 0.002 0.20 3.067 103.7 14932 14.932 715.0 7.05 4 0.0150 608.00 608.0 0.003 0.30 3.070 198.1 28521 28.521 1365.6 13.47 5 0.0200 854.00 854.0 0.004 0.41 3.073 277.9 40019 40.019 1916.2 18.91 6 0.0250 1100.00 1100.0 0.005 0.51 3.076 357.6 51495 51.495 2465.7 24,33 7 0.0300 1284.00 1284.0 0.006 0.61 3.079 417.0 60047 60.047 2875.2 28.37 8 0.0350 1393.00 1393.0 0.007 0.71 3.082 451.9 65078 65.078 3116.1 30.74 9 0.0400 1481.00 1481.0 0.008 0.81 3,085 480.0 69119 69.119 3309.5 32.65 10 0.0450 1563.00 1563.0 0.009 0.91 3.089 506.0 72871 72.871 3489.2 34.43 11 0.0500 1633.00 1633.0 0.010 1.01 3.092 528.2 76057 76.057 3641.7 35.93 12 0.0550 1694.00 1694.0 0.011 1.12 3.095 547.3 78817 78.817 3773.9 37.23 13 0.0600 1741.00 1741.0 0,012 1.22 3.098 562.0 80921 80.921 3874.6 38.23 14 0.0650 1783.00 1783.0 0.013 1.32 3.101 574.9 82788 82,788 3964.0 39.11 15 0.0700 1818.00 1818.0 0.014 1.42 3.105 585.6 84326 84.326 4037.7 39.84 16 0.0750 1827.00 1827.0 0.015 1.52 3.108 587.9 84657 84.657 4053.5 39.99 17 0.0800 1825.00 1825.0 0.016 1.62 3.111 586.E 84477 84.477 4044.9 39.91 I� �n . PLATE: B-UC.21 a GREGORY GEOTECHNICAL UC-02007-B-3,64-65.x1s UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 250.0 -+-4-4---- +- -1-1- ----'--L-L- -�- --'-- -1-1- ----'--L-1- I 1 1 1 I 1 1 1 I 1 1 1 1 1 1 -T-'1-1----r-r-T- -1--I"r- -T"1-1----r-r-T' 4- -+-4--1---- 1--1--1-- -4 - 1--1----�-�-+- 200.0 I I I I 1 I I I I I 1 1 I I I 1 -r-'1-1----r-r-r- -1--I--r- -T-�-1---'r-r-T- _4._4-4----1--L-j'- -4-1--�_ -1-4-J----1.._L-J.- 1 I I i I I 1 I I i I I I I 1 L1J -r- - ----r-r-r- -�--1--r- -T- - ----r-r-r- 150.0 -'-'-'----'--'- !- -'--'--'- -i--'-'----'--L-! I 1 1 I I I I 1 1 I 1 1 I I 1 - -r-�--t----r-r-r- --1--t--r- -T--T--1----r-r-T- LU _1_1_J-___L-L_1_ _-1--I-_L- -1_1-J_-__L_L_1_ I I 1 1 1 1 _ 1_ 1-_1-_ I I 1 I 1 1 100.0 L L 1 W _ _ _ I -r T t1 -T--t--1--_-r'-r't- '-1--1--r- -t-'t--1----r-r-t- _L_1_J----L_L_L_ _J__I_-t- _1_1_J----L_L_1_ 0 5 0.0 V -t--r--I----r-r-t- --I--r-r- -T--r-�----r-r-T- _ I t I I I 1 I 1 1 1 1 I I I 1 0.0 0 2 4 6 8 10 AXIAL STRAIN- % SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 9.0 Dry Density cf 136.2 Diameter in 1.96 Height in 4.95 Heigth/Diameter Ratio 2.52 Calculated Saturation % 72.5 Calculated Void Ratio 0.37 Assumed Specific Gravity 3.00 Failure Strain % 0.10 Unconfined Compressive Strength ksf 237.85 Undrained Shear Strength ksf 118.93 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-3,69-70ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE,light gray PROJECT NO: CDMO2007 CLIENT: CDM DATE: 4/23103 LL: PL: PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.22 __ NA NA NA NA - UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE,light gray Dia. : 1.96 In Ht. : 4.95 in SAMPLE LOCATION: B-3,69-70ft Area: 3.026 in"2 Weight: 584.5 g No. Def. Load Load 8 e% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings in"2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.026 0.0 0 0.000 0.0 0.00 2 0.0050 440.00 440.0 0.001 0.10 3.029 145.2 20914 20.914 1001.4 9.88 3 0.0050 2844.00 2844.0 0.001 0.10 3.029 938.8 135183 135.183 6472.8 63.86 4 0.0050 50o4.00 5004.0 0.001 0.10 3.029 1651.8 237854 237.854 11388.9 112.36 pff w �r war GREGORY GEOTECHNICAL UC-02007-B-3,69-70.x1s PLATE: B-UC.22a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 -1-J- ----L-1-J---- -1-J---- -L-1- --�--L-1- I I I 1 1 I 1 1 I I 1 1 1 I 1 I y.. -T-1--1-- -r-Y-1----r-T-1-__-r-r-T- --I--r-T- 1 i 1 1 1 I I I 1 I 1 1 1 I I 15.0 1 1 1 1 1 1 I t l t l l I l t -T-Y-1-- -r-T-1----r-T- --I--r-T- j� - - - -- -L- - ----L- -J----�-L- - --�--L- - a 1 1 1 1 1 1 1 I 1 1 1 1 1 1 I -1-J--1-- -L-1-'1----L-1-'�----1--L-1- --1--L-L- 1 I 1 I I 1 I I I I I I I I I (n -T-1--I----r-Y-7----r-T-1----t--r-Y- --I--I--T- �,{,� 1 0.0 I I 1 I I I 1 I I 1 I I I I I _ > I I I 1 I I I I I I I 1 I 1 1 _L_J--I-_ _L_1-J__-_L_1-J-___1--.4-_1_ _-I--I--L_ 1 I I 1 1 1 I I 1 I 1 1 1 I I -t-1--I-_ -r-Y-7----t-t-'I----f--r-7- --1--t-t- W -1----F-T-7 --1--L-T 1 1 1 I I I 1 1 1_J_--- I. 1 I I I I I 1 I I I I I I 1 I 5.0 O I I 1 1 I 1 1 I I I I I 1 I I 1 I 1 I I 1 1 I I 1 I 1 I - -t- ----t-1--i----t--t-'1----f--t-t- --1--t--t- I 1 1 I 1 I I I I 1 I 1 1 1 0.0 - 0 2 4 6 8 10 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 20.9 Dry Density cf 110.9 Diameter in 2.76 Height in 5.73 Heigth/Diameter Ratio 2.08 Calculated Saturation % 108.7 3 Calculated Void Ratio 0.52 Assumed Specific Gravity 2.70 Failure Strain % 4.54 Unconfined Compressive Strength ksf 3.05 Undrained Shear Strength ksf 1.53 L I Strain Rate in/min 0.05 REMARKS: Tested at natural moisture content. Failure Mode : Bulge (Dashed) TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: SHELBY TUBE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-4,1-2ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL),brown PROJECT NO: CDM02007 CLIENT: CDM DATE: 4/23/03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.23 33 13 20 66 UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL),brown Dia. : 2.76 In Ht. : 5.73 in SAMPLE LOCATION: B-4,1-2ft Area: 5.987 In^2 Weight: 1208.4 g No. Def. Load Load E E% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) inAn Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 5.987 0.0 0 0.000 0.0 0.00 = 2 0.0100 19.00 19.0 0.002 0.17 5.998 3.2 456 0.456 21.8 0.22 3 0.0200 38.00 38.0 0.003 0.35 6.008 6.3 911 0.911 43.6 0.43 4 0.0300 51.00 51.0 0.005 0.52 6.019 8.5 1220 1.220 58.4 0.58 5 0.0400 60.00 60.0 0.007 030 6.029 10.0 1433 1.433 68.6 0.68 6 0.0500 69.00 69.0 0.009 0.87 6.040 11.4 1645 1.645 78.8 0.78 7 0.0600 76.00 76.0 0.010 1.05 6.051 12.6 1809 1,809 86.6 0.85 8 0.0700 82.00 82.0 0.012 1.22 6.061 13.5 1948 1.948 93.3 0.92 9 0.0800 87.00 87.0 0.014 1.40 6.072 14.3 2063 2.063 98.8 0.97 10 0.0900 91.00 91.0 0.016 1.57 6.083 15.0 2154 2.154 103.2 1.02 11 0.1000 95.00 95.0 0.017 1.74 6.093 15.6 2245 2.245 107.5 1.06 12 0.1100 98.00 98.0 0.019 1.92 6.104 16.1 2312 2.312 110.7 1.09 13 0.1200 102.00 102.0 0.021 2.09 6.115 16.7 2402 2.402 115.0 1.13 14 0.1300 106.00 106.0 0.023 2.27 6.126 17.3 2492 2.492 119.3 1.18 15 0.1400 109.00 109.0 0.024 2.44 6.137 17.8 2558 2.558 122.5 1.21 16 0.1500 113.00 113.0 0.026 2.62 6.148 18.4 2647 2.647 126.7 1.25 17 0.1600 115.00 115.0 0.028 2.79 6.159 18.7 2689 2.689 128.7 1.27 18 0.1700 118.00 118.0 0.030 2.97 6.170 19.1 2754 2.754 131.9 1.30 19 0.1800 120.00 120.0 0.031 3.14 6.181 19.4 2796 2.796 133.9 1.32 20 0.1900 123.00 123.0 0.033 3.31 6.192 19.9 2860 2.860 137.0 1.35 21 0.2000 125.00 125.0 0.035 3.49 6.204 20.1 2902 2.902 138.9 1.37 22 0.2100 127.00 127.0 0.037 3.66 6.215 20.4 2943 2.943 140.9 1.39 23 0.2200 128.00 128.0 0.038 3.84 6.226 20.6 2960 2.960 141.8 1.40 24 0.2300 131.00 131.0 0.040 4.01 6.237 21.0 3024 3.024 144.8 1.43 25 0.2400 131.00 131.0 0.042 4.19 6.249 21.0 3019 3.019 144.5 1.43 26 0.2500 132.00 132.0 0.044 4.36 6.260 21.1 3036 3.036 145.4 1.43 27 0.2600 133.00 133.0 0.045 4.54 6.272 21.2 3054 3.054 146.2 1.44 28 0.2700 132.00 132.0 0.047 4.71 6,283 21.0 3025 3.025 144.9 1.43 29 0.2800 132.00 132.0 0.049 4.88 6.295 21.0 3020 3.020 144.6 1.43 30 0.2900 133.00 133.0 0,051 5.06 6.306 21.1 3037 3.037 145.4 1.43 31 0.3000 132.00 132.0 0.052 5.23 6.318 20.9 3009 3.009 144.1 1.42 32 0.3100 132.00 132.0 0.054 5.41 6.329 20.9 3003 3.003 143.8 1.42 33 0.3200 130.00 130.0 0.056 5.58 6.341 20.5 2952 2.952 141.4 1.39 34 0.3300 129.00 129.0 0.058 5.76 6.353 20.3 2924 2.924 140.0 1.38 35 0.3400 126.00 126.0 0.059 5.93 6.365 19.8 2851 2.851 136.5 1.35 36 0.3500 124.00 124.0 0.061 6.11 6.377 19.4 2800 2.800 134.1 1.32 PLATE: B-UC.23a GREGORY GEOTECHNICAL UC-02007-B-4,1-2.xls — UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 I 1 1 I I I I t I 1 I I I t 1 I t I I 1 I 1 1 1 1 1 I I I I 1 I � -T-1--1--r- --r--1--1--r- _1__I_-r-r- --1--I--r-T- I I I 1 I I I I t 1 I 1 1 I I I 15.0 1 1 I 1 1 1 I i 1 1 I 1 I I I 1 fn -r-�--I--r- -�--I--1--r- -�--I--r-r- --I--1--r-r- W t 1 - - - --1-- - - --1--L- - - --L-L- - ----L-�- 1 I 1 I 1 1 I I I 1 I I I 1 -'�--I--I--I-- -4--4--I--L- --I--I--I--L- --+--I--L-}- I 1 I 1 1 I 1 I 1 I 1 1 t I I 1 (j -r-.1--I--r- -T--1--1--r- -.1--1--r-r- --1-'1--r-T- W 10.0 i I 1 I i I I I 1 i I 1 1 1 1 I co I 1 I I 1 I I I I l 1 1 I I 1 1 co -t-�--1--r- -Y-ti--1--r- -Y--I--r-t- --1--I--r-t- W _ 1 _ I__I__I T 1 I 1 -. _1_J__I__L_ _1_J_-I_-L- _J__I_-L_L- _J--1__L_L_ Ca 1 I I 1 I I I I I 1 1 I 1 I I 1 c 5.0 1 1 1 1 I 1 I I 1 I I I I 1 1 1 O -T-I--,--j- -i------,-- -I--,--,--j- -j--,--r-T - U i I 1 1 1 1 1 I 1 1 I 1 1 1 -t- -I--r- -Y--I--I--r- -Y--I--f--t- --I--1--r-t- I 1 I 1 I 1 1 I 1 I I I 1 1 I 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA - Moisture Content % 18.2 Dry Density pcf 108.4 Diameter in 2.76 1 Height in 5.73 I Heigth/Diameter Ratio 2.08 I Calculated Saturation % 88.8 Calculated Void Ratio 0.55 IAssumed Specific Gravity 2.70 I I Failure Strain % 7.50 II ; Unconfined Compressive Strength ksf 3.54 Undrained Shear Strength ksf 1.77 Strain Rate in/min 0.05 REMARKS: Tested at natural moisture content. Classification Tests Failure Mode : Bulge (Dashed) taken from 15-16ft TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: SHELBY TUBE PROJECT. Trinity River Siphon SAMPLE LOCATION: B-4,16-17ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL),brown PROJECT NO: CDMO2007 CLIENT. CDM DATE: 4/23/03 LL: PL: PI : Percent <200 Sieve: GREGORYGEOTECHNICAL PLATE: B-LIC.24 32 14 18 1 66 UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL),brown Dia. : 2.76 in Ht. : 5.73 in SAMPLE LOCATION: B-4,16-17ft Area: 5.983 In"2 Weight: 1154.0 g No. Def. Load Load s s% Corr. UC UC UC UC UC/Pa (in) Reading (ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 5.983 0.0 0 0.000 0.0 0.00 2 0.0100 17.00 17.0 0.002 0.17 5.993 2.8 408 0.408 19.6 0.19 3 0.0200 32.00 32.0 0.003 0.35 6.004 5.3 768 0.768 36.8 0.36 4 0.0300 43.00 43.0 0.005 0.52 6.014 7.1 1030 1.030 49.3 0.49 5 0.0400 50.00 50.0 0.007 0.70 6.025 8.3 1195 1.195 57.2 0.56 6 0.0500 56.00 56.0 0.009 0.87 6.035 9.3 1336 1.336 64.0 0.63 7 0.0600 61.00 61.0 0.010 1.05 6.046 10.1 1453 1.453 69.6 0.69 8 0.0700 65.00 65.0 0.012 1.22 6.057 10.7 1545 1.545 74.0 0.73 9 0.0800 70.00 70.0 0.014 1.40 6.068 11.5 1661 1.661 79.5 0.78 10 0.0900 75.00 75.0 0.016 1.57 6.078 12.3 1777 1.777 85.1 0.84 11 0.1000 78.00 78.0 0.017 1.74 6.089 12.8 1845 1.845 88.3 0.87 12 0.1100 82.00 82.0 0.019 1.92 6.100 13.4 1936 1.936 92.7 0.91 13 0.1200 85.00 85.0 0.021 2.09 6.111 13.9 2003 2.003 95.9 0.95 14 0.1300 89.00 89.0 0.023 2.27 6.122 14.5 2094 2.094 100.2 0.99 x 15 0.1400 92.00 92.0 0.024 2.44 6.133 15.0 2160 2.160 103.4 1.02 16 0.1500 95.00 95.0 0.026 2.62 6.144 15.5 2227 2.227 106.6 1.05 17 0.1600 98.00 98.0 0.028 2.79 6.155 15.9 2293 2.293 109.8 1.08 18 0.1700 102.00 102.0 0.030 2.97 6.166 16.5 2382 2.382 114.1 1.13 19 0.1800 105.00 105.0 0.031 3.14 6.177 17.0 2448 2.448 117.2 1.16 20 0.1900 108.00 108.0 0.033 3.31 6.188 17.5 2513 2.513 120.3 1.19 21 0.2000 111.00 111.0 0.035 3.49 6.199 17.9 2578 2.578 123.5 1.22 22 0.2100 114.00 114.0 0.037 3.66 6.210 18.4 2643 2.643 126.6 1.25 23 0.2200 117.00 117.0 0.038 3.84 6.222 18.8 2708 2.708 129.7 1.28 24 0.2300 119.00 119.0 0.040 4.01 6.233 19.1 2749 2.749 131.6 1.30 25 0.2400 124.00 124.0 0.042 4.19 6.244 19.9 2860 2.860 136.9 1.35 26 0.2500 126.00 126.0 0.044 4.36 6.256 20.1 2900 2.900 138.9 1.37 27 0.2600 129.00 129.0 0.045 4.54 6.267 20.6 2964 2.964 141.9 1.40 28 0.2700 132.00 132.0 0.047 4.71 6.279 21.0 3027 3.027 145.0 1.43 29 0.2800 134.00 134.0 0.049 4.88 6.290 21.3 3068 3.068 146.9 1.45 30 0.2900 137.00 137.0 0.051 5.06 6.302 21.7 3131 3.131 149.9 1.48 31 0.3000 140.00 140.0 0.052 5.23 6.313 22.2 3193 3.193 152.9 1.51 32 0.3100 141.00 141.0 0.054 5.41 6.325 22.3 3210 3.210 153.7 1.52 33 0.3200 143.00 143.0 0.056 5.58 6.337 22.6 3250 3.250 155.6 1.54 _ 34 0.3300 145.00 145.0 0.058 5.76 6.348 22.8 3289 3.289 157.5 1.55 35 0.3400 146.00 146.0 0.059 5.93 6.360 23.0 3306 3.306 158.3 1.56 36 0.3500 150.00 150.0 0.061 6.11 6.372 23.5 3390 3.390 162.3 1.60 37 0.3600 151.00 151.0 0.063 6.28 6.384 23.7 3406 3.406 163.1 1.61 j 38 0.3700 152.00 152.0 0.065 6.45 6.396 23.8 3422 3.422 163.9 1.62 39 0.3800 153.00 153.0 0.066 6.63 6.408 23.9 3438 3.438 164.6 1.62 40 0.3900 155.00 155.0 0.068 6.80 6.420 24.1 3477 3.477 166.5 1.64 41 0.4000 156.00 156.0 0.070 6.98 6.432 24.3 3493 3.493 167.2 1.65 42 0.4200 157.00 157.0 0.073 7.33 6.456 24.3 3502 3.502 167.7 1.65 43 0.4300 159.00 159.0 0.075 7.50 6.468 24.6 3540 3.540 169.5 1.67 44 0.4400 158.00 158.0 0.077 7.68 6.480 24.4 3511 3.511 168.1 1.66 45 0.4600 157.00 157.0 0.080 8.03 6.505 24.1 3476 3.476 166.4 1.64 46 0.4800 156.00 156.0 0.084 8.37 6.530 23.9 3440 3.440 164.7 1.63 47 0.4900 155.00 155.0 0.085 8.55 6.542 23.7 3412 3.412 163.4 1.61 48 0.5000 153.00 153.0 0.087 8.72 6.555 23.3 3361 3.361 160.9 1.59 49 0.5200 148.00 148.0 0.091 9.07 6.580 22.5 3239 3.239 155.1 1.53 GREGORY GEOTECHNICAL UC-02007-B-4,8-9.xis PLATE: B-UC.24a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 20.0 —1—J— --�— —1—J--1--L— —�—�--L—L— — --1--L-1— I I I t I I 1 I I I I 1 1 I 1 1 1 I I I I 1 1 I I 1 I 1 1 I I I W —T--I--I—'r— —T—�I--r'r— —'1--1--r—r— —1--1--r—T— 1 1 I I 1 I I I 1 I I 1 1 1 I I 1 15.0 I I I 1 1 I 1 I 1 I I I 1 I I 1 N —T--1--1--r- -T—'I--I--r- -'1--I--r—r— —1--1--r—r— N — — — --I-- — — --t--L— — — --I--�— — --1--L—1— W 1 1 I , 1 1 1 I I I I 1 1 I I I —1_'1--1--1-- —'{—J--1--L— —1--I--L—L— —J--1--L—a'— E.... I 1 1 1 1 1 I I I 1 I I 1 I 1 I N —r--t--1--r— --r-7--r—r— —�--I--r—r— —7--I--r—r— w 10.0 N I I I 1 1 I I I 1 I I 1 i I I t N —t-7--1--r- --r-7--I--r- -'I--I--r—r— —7--1--r—t- 1 1 — -------- — ---- ----- ---- I I I— 1 I I 1 I I 1 1 1 I 1 1 a' 5.0 O1 I 1 1 1 I 1 1 I I I t I I I 1 1 1 1 I 1 I I I 1 1 1 1 I 1 —t--I--1--h-- —t—ti--1--r- —'1--I--r—t— —7--I--r—t- 1 I I I I 1 1 I I I 1 1 I I I I 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 15.0 Dry Density pef 111.9 Diameter in 2.20 I Height In 4.41 I 1 Heigth/Diameter Ratio 2.00 Calculated Saturation % 79.8 I I Calculated Vold Ratio 0.51 Assumed Specific Gravity 2.70 I I Failure Strain % 4.76 jUnconfined Compressive Strength ksf 4.75 Undrained Shear Strength ksf 2.37 Strain Rate in/min 0.04 REMARKS: Tested at natural moisture content. Failure Mode : Bulge (Dashed) TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: CME TUBE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-5,1-2ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL), light to medium PROJECT NO: CDM02007 brown CLIENT. CDM DATE: 4/24103 LL: PL, PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.25 39 15 24 95 UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SANDY LEAN CLAY(CL), light to medium brown Dia. : 2.20 in Ht. 4.41 in SAMPLE LOCATION: B-5,1-2ft Area: 3.812 ln"2 Weight: 568.1 g No. Def. Load Load E s% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.812 0.0 0 0.000 0.0 0.00 2 0.0010 20.00 20.0 0.000 0.02 3.813 5.2 755 0.755 36.2 0.36 3 0.0200 38.00 38.0 0.005 0.45 3.829 9.9 1429 1.429 68.4 0.68 4 0.0300 48.00 48.0 0.007 0.68 3.838 12.5 1801 1.801 86.2 0.85 5 0.0400 58.00 58.0 0.009 0.91 3.847 15.1 2171 2.171 104.0 1.03 6 0.0500 65.00 65.0 0.011 1.13 3.855 16.9 2428 2.428 116.2 1.15 7 0.0600 72.00 72.0 0.014 1.36 3.864 18.6 2683 2.683 128.5 1.27 8 0.0700 79.00 79.0 0.016 1.59 3.873 20.4 2937 2.937 140.6 1.39 9 0.0800 85.00 85.0 0.018 1.81 3.882 21.9 3153 3.153 151.0 1.49 10 0.0900 90.00 90.0 0.020 2.04 3.891 23.1 3331 3.331 159.5 1.57 11 0.1000 94.00 94.0 0.023 2.27 3.900 24.1 3471 3.471 166.2 1.64 12 0.1100 100.00 100.0 0.025 2.49 3.909 25.6 3684 3.684 176.4 1.74 13 0.1200 105.00 105.0 0.027 2.72 3.918 26.8 3859 3.859 184.8 1.82 14 0.1300 109.00 109.0 0.029 2.95 3.927 27.8 3997 3.997 191.4 1.89 15 0.1400 113.00 113.0 0.032 3.17 3.937 28.7 4134 4.134 197.9 1.95 16 0.1500 119.00 119.0 0.034 3.40 3.946 30.2 4343 4.343 207.9 2.05 17 0.1600 124.00 124.0 0.036 3.63 3.955 31.4 4515 4.515 216.2 2.13 18 0.1700 126.00 126.0 0.039 3.85 3.964 31.8 4577 4.577 219.1 2.16 19 0.1800 129.00 129.0 0.041 4.08 3.974 32.5 4675 4.675 223.8 2.21 20 0.1900 130.00 130.0 0.043 4.31 3.983 32.6 4700 4.700 225.0 2.22 21 0.2000 131.00 131.0 0.045 4.53 3.993 32.8 4725 4.725 226.2 2.23 22 0.2100 132.00 132.0 0.048 4.76 4.002 33.0 4749 4.749 227.4 2.24 23 0.2200 132.00 132.0 0.050 4.99 4.012 32.9 4738 4.738 226.9 2.24 24 0.2300 130.00 130.0 0.052 5.21 4.021 32.3 4655 4.655 222.9 2.20 25 0.2400 129.00 129.0 0.054 5.44 4.031 32.0 4608 4.608 220.7 2.18 26 0.2500 128.00 128.0 0.057 5.67 4.041 31.7 4562 4.562 218.4 2.15 27 0.2600 126.00 126.0 0.059 5.89 4.050 31.1 4480 4.480 214.5 2.12 28 0.2700 123.00 123.0 0.061 6.12 4.060 30.3 4362 4.362 208.9 2.06 GREGORYGEOTECHNICAL UC-02007-13-5.1-2.xls PLATE: B-UC.25a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 40.0 1 I i I I I 1 I 1 I 1 1 I I I I 1 I I I 1 1 1 1 I 1 1 I I 1 I I • 4.. —T^"1--1"r— —'I--1--1--r- —Y--1—'r—r— --1--1--r'T' Y - -!- --�- - -J-i--L I- -�-�--�-L- - --:--1L-1 1 - i I I I I I 1 I I 1 I 1 1 30.0 fn - -Y--1--r- -�--I--r-r- -Y--I--r-r- --I--1--r-r- - —!—�--�— —�— --I--L- —!—�—_1__I _ _ I _ W I 1 1 I t 1 I 1 1 1 1 I -1-'�-1 I OC a--'I--1--L- -'�--+--I--I-- -J--i--�'-I'- -J--I--L-a'- t � r--i--r-r- -Y--1--r-r- -Y--I--r-r- -�--r-r-r- 20.0 -J_-1--L-1_ T-Y--1--t'- -Y-'1--1--r- -Y--l--r-r- -7--I--r-T- W I I I 1 1 1---- ---- _ ------ ---- I 1 1 I 1 I 1 I I I I 1 I I I I t1 1 1 1 I I 1 I 0 10.0 I I 1 1 I 1 1 I I I I I I I I I -T-i--,--i- -T-�--�-1- -i--,--f--i- -1--i-r-T- V _1--1 —1--L— _J_J_-1—_L_ _J—J_—L'—L_ _J_—I__L-1_ 1 I I I I 1 I I I I I 1 1 1 1 1 —t^ti--1--h'— —Y--I--1--r— —Y--1--r—t— --1--I--r-t- I I 1 1 1 I 1 I 1 t 1 1 1 I 1 I -T -fr- -1-I--,--�- - --,--,--r- - --,--,--�- 0.0 - 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA _ Moisture Content % 15.1 Dry Density Pcf 118.9 Diameter In 1.97 Height in 4.74 Heigth/Diameter Ratio 2.41 Calculated Saturation % 78.6 Calculated Void Ratio 0.58 Assumed Specific Gravity 3.00 Failure Strain % 1.33 Unconfined Compressive Strength ksf 30.74 Undrained Shear Strength ksf 15.37 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION { SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-5,57-58 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE,grey PROJECT NO: CDMO2007 CLIENT: CDM DATE: 41ZN03 LL: PL: PI : Percent< 200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.26 NA NA NA I NA UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE,gray Dia. : 1.97 in Ht. 4.74 In SAMPLE LOCATION: M,57-58 ft Area: 3.051 In"2 Weight: 519.8 g No. Def. Load Load 9 s% Corr. UC UC UC UC UC/Pa (in) Reading (ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings inA2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.051 0.0 0 0.000 0.0 0.00 2 0.0050 123.00 123.0 0.001 0.11 3.054 40.3 5799 5.799 277.7 2.74 3 0.0100 239.00 239.0 0.002 0.21 3.058 78.2 11256 11.256 539.0 5.32 4 0.0150 301.00 301.0 0.003 0.32 3.061 98.3 14161 14.161 678.1 6.69 5 0.0200 347.00 347.0 0.004 0.42 3.064 113.2 16308 16.308 780.8 7.70 6 0.0250 404.00 404.0 0.005 0.53 3.067 131.7 18966 18.966 908.1 8.96 7 0.0300 461.00 461.0 0.006 0.63 3.071 150.1 21619 21.619 1035.2 10.21 8 0.0350 513.00 513.0 0.007 0.74 3.074 166.9 24033 24.033 1150.7 11.35 9 0.0400 558.00 558.0 0.008 0.84 3.077 181.3 26113 26.113 1250.3 12.34 10 0.0450 581.00 581.0 0.009 0.95 3.080 188.6 27160 27.160 1300.5 12.83 11 0.0500 612.00 612.0 0.011 1.05 3.084 198.5 28579 28.579 1368.4 13.50 12 0.0550 634.00 634.0 0.012 1.16 3.087 205.4 29575 29.575 1416.1 13.97 13 0.0600 655.00 655.0 0.013 1.27 3.090 212.0 30522 30.522 1461.4 14.42 14 0.0630 660.00 660.0 0.013 1.33 3.092 213.4 30735 30.735 1471.7 14.52 15 0.0650 625.00 625.0 0.014 1.37 3.094 202.0 29093 29.093 1393.0 13.74 GREGORY GEOTECHNICAL UC-02007-8-5.57-58_x1s PLATE: B-UC.26a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 100.0 -L-1-J-�----L-L-1- ----I--L-L-�- --I--1--L-L- t I t t I 1 ! t 1 1 1 1 1 I 1 1 4. I I I I I 1 1 1 1 1 1 1 I I 1 I W. -T-�- --1-- -r-T-1-'1----r-r-r-1- --I--r-r-T- I I 1 I I I 1 I I 1 1 1 I 1 1 I 1 75.0 I I 1 I I I I 1 I I 1 1 I I I 1 fA -r- --�--1-- -r-r-i-- ----r-r-r-�- --r-r-r-r- -L I I-J-- -L-L-I-J----I--L- -1- --I--I--L- - 1 I I I I I 1 1 i 1 I t 1 1 1 1 w 50.0 I 1 i 1 I I 1 I 1 I I 1 I I I 1 t-Y--7--I-- -r-t-Y-'7----r-P-T-Y- _-1--r-P-T- W I I I 1 ___1 _ 1 _ 1 1___-I _I _ 1 _ I_ -I-I-I--1 I I I I I I I 1 --1--1-I-I- _L_1_J__I__ L_L_1_ _-I--L_L_1_ 0. I I I I I 1 I I I 1 I I I I I 1 25.0 I I I I 1 1 1 I 1 1 1 I I 1 I 1 O -�-;-;--,-- -r-r-7--I----,--r-T-7- --�-,--r-T_ 1 1 I I I I 1 1 I I 1 I 1 I 1 I -t-Y-ti--I-- -t-t-Y--1----r-t-t-Y- --I--r-t-t- I 1 I 1 I I 1 I 1 I 1 I 1 1 1 1 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 11.6 Dry Density pcf 130.2 Diameter in 1.97 Height in 4.06 Heigth/Diameter Ratio 2.06 Calculated Saturation % 79.7 Calculated Void Ratio 0.44 Assumed Specific Gravity 3.00 Failure Strain % 2.71 Unconfined Compressive Strength ksf 84.85 Undrained Shear Strength ksf 42.42 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-5,63-64 R LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE,gray PROJECT NO: CDMO2007 CLIENT: CDM DATE: 4/23/03 LL: PL: PI : Percent <200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.27 NA NA NA I NA UC Test-Readings Data PROJECT NO: CDMO2007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE,gray Dia. : 1.97 in Ht. 4.06 In SAMPLE LOCATION: B-5,63-64It Area: 3.048 in"2 Weight: 472.2 g No. Def. Load Load e e% Corr. UC UC UC UC UC/Pa (in) Reading (Ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings in^2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.048 0.0 0 0.000 0.0 0.00 2 0.0050 231.00 231.0 0.001 0.12 3.052 75.7 10900 10.900 521.9 5.15 3 0.0100 543.00 543.0 0.002 0.25 3.056 177.7 25590 25.590 1225.3 12.09 4 0.0150 768.00 768.0 0.004 0.37 3.059 251.0 36149 36.149 1730.9 17.08 5 0.0200 908.00 908.0 0.005 0.49 3.063 296.4 42686 42.686 2043.9 20.17 6 0.0250 1001.00 1001.0 0.006 0.62 3.067 326.4 46999 46.999 2250.4 22.20 7 0.0300 1081.00 1081.0 0.007 0.74 3.071 352.0 50693 50.693 2427.3 23.95 8 0.0350 1138.00 1138.0 0.009 0.86 3.075 370.1 53299 53.299 2552.1 25.18 9 0.0400 1200.00 1200.0 0.010 0.99 3.078 389.8 56133 56.133 2687.8 26.52 10 0.0450 1254.00 1254.0 0.011 1.11 3.082 406.8 58586 58.586 2805.2 27.68 11 0.0500 1312.00 1312.0 0.012 1.23 3.086 425.1 61220 61.220 2931.3 28.92 12 0.0550 1364.00 1364.0 0.014 1.36 3.090 441.4 63567 63.567 3043.7 30.03 13 0,0600 1414.00 1414.0 0.015 1.48 3.094 457.0 65815 65.815 3151.3 31.09 14 0.0650 1463.00 1463.0 0.016 1.60 3.098 472.3 68010 68.010 3256.5 32.13 { 15 0.0700 1512.00 1512.0 0,017 1.72 3.102 487.5 70200 70.200 3361.3 33.16 16 0.0750 1564.00 1564.0 0.018 1.85 3.105 503.6 72523 72.523 3472.6 34.26 17 0.0800 1613.00 1613.0 0.020 1.97 3,109 518.8 74702 74.702 3576.9 35.29 18 0.0850 1661.00 1661.0 0.021 2.09 3.113 533.5 76828 76.828 3678.7 36.29 19 0.0900 1702.00 1702.0 0,022 2.22 3,117 546.0 78625 78.625 3764.7 37.14 20 0.0950 1751.00 1751.0 0.023 2.34 3.121 561.0 80787 80.787 3868.2 38.16 Y 21 0.1000 1791.00 1791.0 0.025 2.46 3.125 573.1 82528 82.528 3951.6 38.99 22 0.1050 1829.00 1829.0 0.026 2.59 3.129 584.5 84173 84.173 4030.4 39.76 23 0.1100 1846.00 1846.0 0.027 2.71 3.133 589.2 84848 84.848 4062.7 40.08 24 0.1150 1843.00 1843.0 0.028 2.83 3.137 587.5 84603 84.603 4050.9 39.97 25 0.1170 1673.00 1673.0 0.029 2.88 3.139 533.1 76760 76.760 3675.4 36.26 GREGORY GEOTECNNICAL UC-02007-B-5,63-64.x1s PLATE: B-UC,27a UNCONFINED COMPRESSIVE STRENGTH TEST REPORT 80.0 1 I I I I I I I I I I I I I I I --r--I--I--r- -�-�--I--r- -�--I--r-r- -�--I--r-r- I Y -+- --1--I-- -f-'�--I--F-60.0 -'I--I--I--+- -'�--I--F-+- I 1 I I I I 1 1 I I I I 1 1 I 1 1 I 1 1 I I 1 1 I I I I i I I I 1 (n 1_J__►-_L_ _1_J__I__L_ _J__I__L_L_ _J__1__L_1_ 1-J--1--L -1-J- 1 I-I--L- -J--1--L-1. -J--I--L-1- I I I 1 I I I I I I I I I I (n I I 1 I I I 1 I I 1 I I I 1 I 1 W 40.0 I I I I I I I I I I I I I I I I I I 1 I I I I I I I I I 1 1 I 1 1 1 ► 1 1 1 I I 1 i I I I 1 I 1 N I I 1 1 1 I 1 I I I 1 I 1 h 1 1 I I I I I I I 1 I I I 11 I I I I -T--1--1--r- - -I--I--r- --1--1-41- -n'--I--r-r- IL 20.0 O V I I I I I I I I 1 I I I 1 I I 1 I I I I I I I I 1 I 1 1 I I I 1 I I I I 1 I I I 1 I I I I I I I 0.0 0 5 10 15 20 AXIAL STRAIN-% SPECIMEN FAILURE MODE SPECIMEN TEST DATA Moisture Content % 12.3 Dry Density pcf 128.3 Diameter in 1.98 Height in 4.06 Heigth/Diameter Ratio 2.05 Calculated Saturation % 80.1 Calculated Void Ratio 0.46 Assumed Specific Gravity 3.00 Failure Strain % 0.86 Unconfined Compressive Strength ksf 62.22 Undrained Shear Strength ksf 31.11 Strain Rate in/min 0.03 REMARKS: Tested at natural moisture content. Specimen instantly Failure Mode : Multi-Crack fragmented at failure, not practical to sketch cracked pattern. TEST DESCRIPTION PROJECT INFORMATION SAMPLE TYPE: ROCK CORE PROJECT: Trinity River Siphon SAMPLE LOCATION: B-5,66-67 ft LOCATION: Fort Worth,TX SAMPLE DESCRIPTION: SHALE, light gray PROJECT NO: CDM02007 CLIENT: CDM DATE: 4124/03 LL: PL: PI : Percent<200 Sieve: GREGORYGEOTECHNICAL PLATE: B-UC.28 NA I NA I NA I NA UC Test-Readings Data PROJECT NO: CDM02007 PROJECT: Trinity River Siphon SAMPLE DESCRIPTION: SHALE, light gray Dia. : 1.98 in Ht. 4.06 in SAMPLE LOCATION: B-5,66-67 It Area: 3.088 in"2 Weight: 473.9 g No. Def. Load Load 8 8% Corr. UC UC UC UC UC/Pa (in) Reading (ibs) in/in Area Stress Stress Stress Stress Normalized Data Readings in"2 psi psf ksf kPa Stress 1 0.0000 0.00 0.0 0.0 0.0 3.088 0.0 0 0.000 0.0 0.00 2 0.0050 285.00 285.0 0.001 0.12 3.092 92.2 13272 13.272 635.5 6.27 3 0.0100 758.00 758.0 0.002 0.25 3.096 244.8 35255 35.255 1688.1 16.66 4 0.0150 994.00 994.0 0.004 0.37 3.100 320.7 46175 46.175 2210.9 21.81 5 0.0200 1134.00 1134.0 0.005 0.49 3.104 365.4 52613 52.613 2519.2 24.86 6 0.0250 1240.00 1240.0 0.006 0.62 3.108 399.0 57460 57.460 2751.3 27.14 7 0.0300 1312.00 1312.0 0.007 0.74 3.111 421.7 60721 60.721 2907.4 28.69 _ 8 0.0350 1346.00 1346.0 0.009 0.86 3.115 432.1 62217 62.217 2979.1 29.39 9 0.0380 1323.00 1323.0 0.009 0.94 3.118 424.4 61109 61.109 2926.0 28.87 GREGORY GEOTECHNICAL UC-02007-B-5,66-67.x1s PLATE: B-UC.28a GEOTECI3NICAL REPORT APPENDIX C i GREGORY GEOTECHNICAL Report No.R02007 SUMMARY OF SLOPE STABILITY ANALYSES TRINITY RIVER SIPHON PROJECT FORT WORTH,TEXAS Minimum Calculated Recommended Factor Analysis Number Condition Analyzed Factor of Safety of Safety R02007-1 - PLATE C.2 West Side-South View—Long Term 1.434 (NG) 1.5 (Marginal) R02007-1-r- PLATE C.3 West Side-South View— Rapid Drawdown-1 0.993 (NG) 1.0 (Saturated to Crest) (Marginal) R02007-1-r1 - PLATE C.4 West Side-South View—Rapid Drawdown-2 1.165 (NG) 1.2 (Saturated half way up slope) (Marginal) R02007-2- PLATE C.5 East Side-North View—Long Term 1.581 (OK) 1.5 East Side-North View—Rapid Drawdown-1 R02007-2-r- PLATE C.6 (Saturated to Crest) 1.141 (OK) 1.0 R02007-2-r1-PLATE C.7 East Side-North View—Rapid Drawdown-2 1.297 (OK) 1.2 (Saturated half way up slope) Note: Factor of Safety values are expressed to 3 decimal places to provide relative comparisons among the various analyses. This does not imply actual accuracy to 3 decimal places. Factor of safety values rounded to one decimal place should be considered as the typical actual level of accuracy for the analyses. OK= Calculated Factor of Safety Value equal to or greater than minimum recommended NG = Calculated Factor of Safety Value less than minimum recommended Marginal = Calculated Factor of Safety Value close to minimum. May be slightly less than or barely equal to minimum recommended. REFER TO REPORT TEXT FOR MORE DETAILED DISCUSSION OF SLOPE STABILITY ANALYSES RESULTS. PLATE CA Trinity River Siphon -West Side-South View - Long Term - Plate C.2 565 c.%program filesV72sw%r02007-1.pi2 Run By.GREGORY GEOTECHNICAL-MAD/GHG # FS Soil Soil Total Saturated Cohe*ion Friction Pore Pre4sure Piez. a 1.434 Desc. Tyge Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface b 1.434 Ncq (pcf) (pcf) (pOQ (deg) Param. (psf) No. c 1.439 CL Clay 1; 125.0 132.0 432.0 26.0 C 0.00 ao W1 d 1.439 Sand 2; 110.0 120.0 0.0 34.0 0.00 0.0 W1 e 1.439 Shale 3; 130.0 140.0 500.0 28.0 0.00. Oro W1 f 1.440 g 1.441 h 1.449 i 1.449 626 f-1:449------------------ ----------------------------------'--------------------------------- ------------------------ ? 485 --------------------------------'------- ----------------------'•------------------ ----- ' ------------ ------------------------------- � 1 5 7 1 i1 1 ;1 - - - - - - -- -'- - -3- ---------i ---------------------------------- —8----- - �- - - - - - - - + ---- - - - - - - 445 --i--- - - - --- ------------- - -----------------------------•-------------------------------- - 2 9� 3 406 0 40 80 120 160 200 240 GSTABL7 v.2 FSmin=1.434 GSTABL Safety Factors Are Calculated By The Modified Bishop Method 7 C:\Program Files\G72SW\r02007-1.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.004, June 2003 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ********************************************************************************* - Analysis Run Date: Time of Run: Run By: GREGORY GEOTECHNICAL - MAD/GHG Input Data Filename: C:\Program Files\G72SW\r02007-1.in Output Filename: C:\Program Files\G72SW\r02007-1.OUT Unit System: English Plotted Output Filename: C:\Program Files\G72SW\r02007-1.PLT PROBLEM DESCRIPTION: Trinity River Siphon - West Side-South View - Long Term - Plate C.2 BOUNDARY COORDINATES 7 Top Boundaries 9 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type -No. (ft) (ft) (ft) (ft) Below Bnd 1 0.00 444.00 32.50 442.00 2 2 32.50 442.00 58.00 444.00 2 3 58.00 444.00 63.00 447.00 2 4 63.00 447.00 100.00 472.00 1 5 100.00 472.00 185.00 473.00 1 6 185.00 473.00 218.00 474.00 1 7 218.00 474.00 240.00 475.00 1 8 63.00 447.00 240.00 447.00 2 9 0.00 425.00 240.00 428.00 3 User Specified Y-Origin = 405.00(ft) Default X-Plus Value = 0.00(ft) r, Default Y-Plus Value - 0.00(ft) ISOTROPIC SOIL PARAMETERS 3 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. _ Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 125.0 132.0 432.0 26.0 0.00 0.0 1 2 110.0 120.0 0.0 34.0 0.00 0.0 1 3 130.0 140.0 500.0 28.0 0.00 0.0 1 CURVED PHI PARAMETERS 1 Soil Type(s) Assigned Curved Phi Envelope Properties Soil Type 1: Specified Critical Effective Normal Stress - 25000.00(psf) Coefficient a = 6.07 Coefficient b 0.7545 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf) Piezometric Surface No. 1 Specified by 2 Coordinate Points Pore Pressure Inclination Factor = 0.50 Point X-Water Y-Water No. (ft) (ft) 1 0.00 447.00 2 240.00 447.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 1 Surface(s) Initiate(s) From Each Of 500 Points Equally Spaced - Along The Ground Surface Between X = 40.00(ft) and X = 58.00(ft) Each Surface Terminates Between X = 95.00(ft) C:\Program Files\G72SW\r02007-1.OUT Page 2 and X = 125.00(ft) y Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 4.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Total Number of Trial Surfaces Attempted = 500 = Number of Trial Surfaces With Valid FS = 500 Statistical Data On All Valid FS Values: FS Max = 2.347 FS Min = 1.434 FS Ave = 1.813 Standard Deviation = 0.238 Coefficient of Variation = 13.11 % Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 45.230 442.998 2 49.035 441.763 3 52.935 440.875 4 56.899 440.341 5 60.895 440.166 6 64.891 440.351 7 68.854 440.894 8 72.752 441.792 9 76.554 443.036 10 80.228 444.617 11 83.745 446.522 12 87.076 448.736 13 90.196 451.240 14 93.077 454.015 = 15 95.697 457.038 16 98.034 460.283 17 100.071 463.726 18 101.789 467.338 19 103.176 471.090 20 103.432 472.040 Circle Center At X = 60.845 ; Y = 484.547 and Radius = 44.386 Factor of Safety *** 1.434 *** Individual data on the 23 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load - No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 3.8 350.1 917.4 1153.0 0. 0. 0.0 0.0 0.0 2 3.9 997.2 866.7 1418.0 0. 0. 0.0 0.0 0.0 3 4.0 1498.6 804.4 1595.4 0. 0. 0.0 0.0 0.0 4 1.1 480.8 209.7 459.5 0. 0. 0.0 0.0 0.0 5 2.9 1611.9 449.1 1224.4 0. 0. 0.0 0.0 0.0 6 2.1 1554.2 96.7 892.1 0. 0. 0.0 0.0 0.0 7 1.9 1669.9 0.0 790.7 0. 0. 0.0 0.0 0.0 .. 8 4.0 4329.1 0.0 1591.9 0. 0. 0.0 0.0 0.0 9 3.9 5215.2 0.0 1412.1 0. 0. 0.0 0.0 0.0 10 3.8 5833.6 0.0 1144.7 0. 0. 0.0 0.0 0.0 11 3.7 6175.3 0.0 792.1 0. 0. 0.0 0.0 0.0 12 3.5 6243.7 0.0 357.0 0. 0. 0.0 0.0 0.0 13 0.7 1302.2 0.0 12.9 0. 0. 0.0 0.0 0.0 14 2.6 4740.9 0.0 0.0 0. 0. 0.0 0.0 0.0 15 3.1 5588.3 0.0 0.0 0. 0. 0.0 0.0 0.0 _ 16 2.9 4941.6 0.0 0.0 0. 0. 0.0 0.0 0.0 17 2.6 4153.0 0.0 0.0 0. 0. 0.0 0.0 0.0 18 2.3 3279.0 0.0 0.0 0. 0. 0.0 0.0 0.0 19 2.0 2307.4 0.0 0.0 0. 0. 0.0 0.0 0.0 20 0.1 73.5 0.0 0.0 0. 0. 0.0 0.0 0.0 21 1.7 1391.6 0.0 0.0 0. 0. 0.0 0.0 0.0 22 1.4 487.9 0.0 0.0 0. 0. 0.0 0.0 0.0 23 0.3 15.2 0.0 0.0 0. 0. 0.0 0.0 0.0 C:\Program Files\G72SW\r02007-1.OUT Page 3 Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 42.092 442.752 2 45.901 441.532 3 49.797 440.623 4 53.753 440.032 5 57.744 439.764 6 61.744 439.819 7 65.726 440.197 8 69.664 440.896 9 73.533 441.911 10 77.307 443.236 11 80.962 444.862 12 84.473 446.778 13 87.818 448.972 14 90.974 451.429 15 93.922 454.133 16 96.641 457.067 17 99.114 460.211 18 101.324 463.544 19 103.258 467.046 20 104.902 470.693 21 105.391 472.063 Circle Center At X = 59.065 ; Y = 489.165 and Radius 49.419 Factor of Safety - *** 1.434 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 40.938 442.662 2 44.727 441.381 3 48.609 440.416 4 52.557 439.774 5 56.545 439.460 6 60.545 439.475 7 64.530 439.819 8 68.473 440.490 9 72.348 441.483 10 76.128 442.792 11 79.787 444.408 12 83.301 446.319 13 86.645 448.514 14 89.797 450.976 15 92.736 453.689 16 95.442 456.635 17 97.896 459.794 - 18 100.081 463.144 19 101.983 466.663 20 103.589 470.327 21 104.181 472.049 Circle Center At X = 5B.365 ; Y 487.969 and Radius 4B.543 Factor of Safety *** 1.439 *** Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 44.617 442.950 2 48.495 441.971 3 52.442 441.321 - 4 56.430 441.004 5 60.430 441.022 6 64.414 441.376 7 6B.354 442.064 B 72.223 443.079 9 75.993 444.416 10 79.638 446.064 C:\Program Files\G72SW\r02007-1.OUT Page 4 11 83.131 448.013 12 86.449 450.247 13 89.567 452.752 14 92.465 455.510 15 95.120 458.502 16 97.515 461.705 17 99.633 465.099 18 101.459 468.658 19 102.846 472.033 Circle Center At X = 58.207 ; Y = 488.597 and Radius = 47.627 Factor of Safety *** 1.439 *** Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 48.549 443.259 2 52.463 442.432 3 56.433 441.942 4 60.430 441.793 5 64.425 441.985 6 68.390 442.517 7 72.294 443.385 8 76.111 444.583 9 79.811 446.102 10 83.368 447.931 11 86.756 450.057 12 89.951 452.464 13 92.929 455.135 14 95.668 458.050 15 98.148 461.188 f 16 100.352 464.526 17 102.263 468.040 18 103.868 471.704 19 103.984 472.047 Circle Center At X = 60.181 ; Y = 488.650 and Radius = 46.858 Factor of Safety *** 1.439 *** Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 47.900 443.208 2 51.709 441.988 3 55.620 441.146 4 59.593 440.688 5 63.593 440.620 6 67.580 440.941 7 71.516 441.650 8 75.365 442.738 9 79.090 444.197 10 82.655 446.011 11 86.026 448.164 12 89.171 450.635 13 92.061 453.401 14 94.668 456.435 15 96.966 459.709 16 98.935 463.191 17 100.555 466.848 18 101.811 470.646 19 102.122 472.025 Circle Center At X - 62.293 ; Y = 481.609 and Radius 41.010 Factor of Safety *** 1.440 *** Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 42.309 442.769 2 46.174 441.740 C:\Program Files\G72SW\r02007-1.OUT Page 5 3 50.109 441.024 4 54.089 440.624 5 58.088 440.545 6 62.081 440.786 7 66.042 441.346 8 69.945 442.221 9 73.765 443.406 10 77.479 444.892 11 81.061 446.672 Y 12 84.490 448.732 13 87.743 451.060 14 90.799 453.641 15 93.638 456.458 _ 16 96.243 459.493 17 98.597 462.728 18 100.684 466.140 19 102.492 469.708 20 103.447 472.041 Circle Center At X = 57.083 ; Y = 490.395 and Radius = 49.865 Factor of Safety *** 1.441 *** Failure Surface Specified By 18 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 50.497 443.412 2 54.326 442.254 3 58.250 441.481 4 62.232 441.102 5 66.232 441.119 6 70.211 441.533 7 74.129 442.339 8 77.947 443.530 9 81.629 445.093 10 85.138 447.014 11 88.439 449.273 12 91.499 451.849 13 94.289 454.715 14 96.781 457.844 15 98.951 461.205 16 100.776 464.764 17 102.240 468.486 18 103.244 472.038 Circle Center At X = 64.060 ; Y = 481.328 and Radius = 40.269 Factor of Safety *** 1.449 *** Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 47.323 443.163 2 51.081 441.793 3 54.951 440.783 4 58.900 440.143 5 62.891 439.879 6 66.889 439.992 7 70.859 440.483 8 74.765 441.345 y 9 78.572 442.572 10 82.247 444.153 11 85.755 446.074 12 89.067 448.316 ` 13 92.153 450.862 14 94.985 453.687 15 97.537 456.767 16 99.788 460.074 a 17 101.716 463.578 18 103.305 467.249 19 104.541 471.053 C:\Program Files\G72SW\r02007-1.OUT Page 6 20 104.765 472.056 Circle Center At X = 63.692 ; Y = 482.165 ; and Radius = 42.299 Factor of Safety *** 1.449 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 45.375 443.010 2 49.148 441.683 3 53.021 440.683 4 56.965 440.017 5 60.952 439.690 6 64.952 439.705 7 68.936 440.061 8 72.875 440.757 9 76.741 441.785 10 80.504 443.140 = 11 84.138 444.812 12 87.616 446.787 13 90.913 449.052 14 94.005 451.590 15 96.868 454.383 16 99.483 457.411 17 101.829 460.650 18 103.891 464.078 19 105.652 467.669 20 107.101 471.398 21 107.302 472.086 Circle Center At X = 62.778 ; Y 486.470 and Radius = 46.815 Factor of Safety *** 1.449 *** **** END OF GSTABL7 OUTPUT **** Trinity River Siphon -West Side-South View - Rapid Drawdown-1 - Plate C.3 565 c.�program fileMg72sw1r02007-1-r.pl2 Run By:GREGORY GEOTECHNICAL-MAD/GHG # FS Soil So'll Total Saturated Cohesion Friction Pore Pressure Piez. a 0.993 Desc. Tyge Unit Wt Unit Wt. Inters ept Angle Pressure Conotant Surface b 0.994 NO. (pco (pof) (pOo (deg) Param. (psf) No. c 1.000 CL Clay 1 E 125.0 132.0 432.0 26.0 C 0.00 mo W1 d 1.016 Sand 2; 110.0 120.0 0.0 34.0 0.00 0.0 W1 e 1.017 Shale 3: 130.0 140.0 500.0 28.0 0.00 0.0 W1 f 1.019 g 1.020 h 1.023 i 1.024 525 r 1:Or4----------------------------------------------------- ----------------------------I ------------------------ ; 485 ----------------------------------------------------------------- ------------------------ ------ -------------------------------------------------------------------- -------------------------------- lh i e 5 ? 7 — — -----------------------------------; t------------ --9----- a ;1 44511, -- - - -� 2 - ; -- - y - 2 S( 3 406 0 40 80 120 160 200 240 GSTABL7 v.2 FSmin=0.993 Safety Factors Are Calculated By The Modified Bishop Method GSTABL7 C:\Program Files\G72SW\r02007-1-r.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.004, June 2003 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ********************************************************************************* - Analysis Run Date: Time of Run: Run By: GREGORY GEOTECHNICAL - MAD/GHG Input Data Filename: C:\Program Files\G72SW\r02007-1-r.in Output Filename: C:\Program Files\G72SW\r02007-1-r.OUT Unit System: English Plotted Output Filename: C:\Program Files\G72SW\r02007-1-r.PLT PROBLEM DESCRIPTION: Trinity River Siphon - West Side-South View - Rapid Drawdown-1 - Plate C.3 BOUNDARY COORDINATES 7 Top Boundaries 9 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.00 444.00 32.50 442.00 2 2 32.50 442.00 58.00 444.00 2 3 58.00 444.00 63.00 447.00 2 4 63.00 447.00 100.00 472.00 1 5 100.00 472.00 1B5.00 473.00 1 6 185.00 473.00 218.00 474.00 1 7 218.00 474.00 240.00 475.00 1 8 63.00 447.00 240.00 447.00 2 9 0.00 425.00 240.00 428.00 3 User Specified Y-Origin = 405.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 3 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 125.0 132.0 432.0 26.0 0.00 0.0 1 2 110.0 120.0 0.0 34.0 0.00 0.0 1 3 130.0 140.0 500.0 28.0 0.00 0.0 1 CURVED PHI PARAMETERS 1 Soil Type(s) Assigned Curved Phi Envelope Properties Soil Type 1: Specified Critical Effective Normal Stress = 500.00(psf) Coefficient a = 6.07 Coefficient b 0.7584 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf) Piezometric Surface No. 1 Specified by 4 Coordinate Points Pore Pressure Inclination Factor = 0.00 Point X-Water Y-Water No. (ft) (ft) 1 0.00 447.00 2 63.00 447.00 3 100.00 472.00 4 240.00 472.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 1 Surface(s) Initiates) From Each Of 500 Points Equally Spaced Along The Ground Surface Between X = 40.00(ft) C:\Program Files\G72SW\r02007-1-r.OUT Page 2 and X = 58.00(ft) Each Surface Terminates Between X = 95.00(ft) and X = 125.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) ` 4.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Total Number of Trial Surfaces Attempted = 500 Number of Trial Surfaces With Valid FS = 500 Statistical Data On All Valid FS Values: �. FS Max = 1.628 FS Min = 0.993 FS Ave = 1.274 Standard Deviation = 0.161 Coefficient of Variation = 12.67 % Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 52.914 443.601 2 56.851 442.895 3 60.832 442.502 4 64.831 442.422 5 68.824 442.658 6 72.786 443.207 7 76.692 444.067 8 80.519 445.231 9 84.243 446.693 10 87.839 448.443 11 91.287 450.471 12 94.565 452.764 13 97.652 455.308 14 100.529 458.087 15 103.178 461.083 16 105.584 464.279 t 17 107.730 467.655 18 109.604 471.188 19 110.007 472.118 Circle Center At X - 63.836 ; Y = 493.198 and Radius = 50.786 Factor of Safety *** 0.993 *** Individual data on the 23 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 3.9 239.7 799.6 936.5 0. 0. 0.0 0.0 0.0 2 1.1 153.9 219.0 299.8 0. 0. 0.0 0.0 0.0 3 2.8 750.2 443.1 773.8 0. 0. 0.0 0.0 0.0 4 2.2 1006.9 102.7 611.7 0. 0. 0.0 0.0 0.0 5 1.8 1124.8 0.0 406.2 0. 0. 0.0 0.0 0.0 6 4.0 343B.3 0.0 1207.4 0. 0. 0.0 0.0 0.0 -- 7 4.0 4610.6 0.0 1600.7 0. 0. 0.0 0.0 0.0 8 3.9 5569.9 0.0 1935.5 0. 0. 0.0 0.0 0.0 9 3.8 6297.8 0.0 2209.8 0. 0. 0.0 0.0 0.0 10 3.7 6784.4 0.0 2422.0 0. 0. 0.0 0.0 0.0 11 0.6 1204.6 0.0 442.6 0. 0. 0.0 0.0 0.0 12 3.0 5797.5 0.0 2127.9 0. 0. 0.0 0.0 0.0 13 3.4 6933.0 0.0 2654.6 0. 0. 0.0 0.0 0.0 14 3.3 6638.1 0.0 2673.8 0. 0. 0.0 0.0 0.0 15 3.1 6144.5 0.0 2627.8 0. 0. 0.0 0.0 0.0 16 2.3 4500.7 0.0 2065.1 0. 0. 0.0 0.0 0.0 17 0.5 989.2 0.0 650.0 0. 0. 0.0 0.0 0.0 18 2.6 4349.2 0.0 3098.8 0. 0. 0.0 0.0 0.0 19 2.4 2974.3 0.0 2325.9 0. 0. 0.0 0.0 0.0 20 2.1 1730.4 0.0 1505.8 0. 0. 0.0 0.0 0.0 21 1.9 661.8 0.0 643.6 0. 0. 0.0 0.0 0.0 22 0.4 23.9 0.0 22.4 0. 0. 0.0 0.0 0.0 C:\Program Files\G72SW\r02007-1-r.0UT Page 3 23 0.1 0.4 0.0 0.0 0. 0. 0.0 0.0 0.0 Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 44.293 442.925 2 48.186 442.010 3 52.135 441.372 4 56.119 441.014 5 60.118 440.938 rt 6 64.113 441.145 7 68.083 441.633 8 72.009 442.400 9 75.871 443.442 10 79.650 444.754 11 83.326 446.329 12 86.883 448.160 13 90.301 450.237 14 93.564 452.551 15 96.656 455.089 16 99.561 457.838 17 102.265 460.786 18 104.754 463.917 19 107.016 467.216 20 109.039 470.667 21 109.756 472.115 Circle Center At X = 59.191 ; Y = 497.579 and Radius 56.648 Factor of Safety *** 0.994 *** Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 46.818 443.123 2 50.761 442.454 3 54.742 442.066 4 58.741 441.959 5 62.737 442.134 6 66.711 442.592 7 70.643 443.328 8 74.512 444.340 9 78.301 445.622 10 81.990 447.169 11 85.561 448.972 12 88.995 451.022 ' 13 92.276 453.310 14 95.388 455.823 15 98.315 458.550 16 101.042 461.477 17 103.555 464.588 18 105.843 467.869 19 107.893 471.304 20 108.294 472.098 Circle Center At X = 58.261 ; Y 498.549 and Radius = 56.595 Factor of Safety *** 1.000 *** Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 46.204 443.075 2 50.145 442.389 3 54.125 441.991 T 4 58.124 441.884 5 62.120 442.069 6 66.091 442.543 7 70.018 443.305 8 73.879 444.350 9 77.654 445.673 10 81.322 447.268 C:\Program Files\G72SW\r02007-1-r.OUT Page 4 11 84.865 449.125 12 88.264 451.234 13 91.500 453.586 14 94.556 456.166 15 97.417 458.962 16 100.066 461.958 17 102.491 465.140 18 104.678 468.489 19 106.616 471.988 20 106.658 472.078 Circle Center At X = 57.595 ; Y = 496.838 and Radius = 54.957 Factor of Safety *** 1.016 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 44.401 442.933 2 48.331 442.191 3 52.301 441.696 4 56.293 441.451 5 60.293 441.456 6 64.285 441.713 7 68.253 442.218 8 72.181 442.972 9 76.054 443.970 10 79.858 445.209 11 83.576 446.684 12 87.194 448.389 13 90.699 450.317 14 94.076 452.461 15 97.311 454.813 16 100.394 457.362 17 103.310 460.100 18 106.049 463.015 _ 19 108.600 466.096 20 110.952 469.331 21 112.744 472.150 Circle Center At X - 58.204 ; Y = 505.223 and Radius 63.801 Factor of Safety *** 1.017 *** Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 48.729 443.273 2 52.698 442.772 3 56.692 442.557 4 60.691 442.631 5 64.675 442.992 6 68.622 443.638 7 72.513 444.567 8 76.327 445.774 9 80.044 447.251 10 83.645 448.993 11 87.111 450.989 12 90.425 453.229 _ 13 93.569 455.702 14 96.527 458.394 15 99.284 461.293 16 101.825 464.382 17 104.137 467.646 18 106.208 471.068 19 106.725 472.079 Circle Center At X = 57.672 ; Y = 498.109 and Radius 55.561 Factor of Safety 1.019 *** Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf C:\Program Files\G72SW\r02007-1-r.0UT Page 5 No. (ft) (ft) 1 52.986 443.607 2 56.855 442.592 3 60.801 441.938 4 64.791 441.650 5 68.790 441.731 6 72.765 442.179 7 76.681 442.992 8 80.506 444.162 9 84.208 445.679 10 87.753 447.530 11 91.113 449.701 12 94.259 452.171 13 97.165 454.920 14 99.804 457.926 15 102.156 461.161 16 104.200 464.600 17 105.918 468.212 18 107.297 471.967 19 107.329 472.086 Circle Center At X = 65.916 ; Y = 485.028 and Radius = 43.393 Factor of Safety *** 1.020 *** Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 48.549 443.259 2 52.463 442.432 3 56.433 441.942 4 60.430 441.793 5 64.425 441.985 6 68.390 442.517 7 72.294 443.385 8 76.111 444.583 9 79.811 446.102 10 83.368 447.931 11 86.756 450.057 12 89.951 452.464 13 92.929 455.135 14 95.668 458.050 15 98.148 461.188 16 100.352 464.526 17 102.263 468.040 18 103.868 471.704 19 103.984 472.047 Circle Center At X = 60.181 ; Y = 488.650 and Radius = 46.858 Factor of Safety *** 1.023 *** Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 40.613 442.636 2 44.417 441.399 3 48.301 440.443 4 52.245 439.774 5 56.227 439.395 6 60.226 439.308 7 64.220 439.514 8 68.189 440.012 v 9 72.111 440.799 10 75.965 441.671 11 79.730 443.222 12 83.386 444.845 13 86.913 446.731 14 90.293 448.870 15 93.508 451.250 16 96.540 453.860 C:\Program Files\G72SW\r02007-1-r.OUT Page 6 17 99.372 456.684 18 101.991 459.707 19 104.381 462.915 20 106.531 466.288 21 108.427 469.810 22 109.457 472.111 Circle Center At X - 59.409 ; Y 493.872 ; and Radius = 54.575 Factor of Safety *** 1.024 *** Failure Surface Specified By 18 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 51.363 443.479 y 2 55.315 442.864 3 59.306 442.597 4 63.305 442.681 5 67.282 443,114 6 71.205 443.895 7 75.044 445.016 8 78.771 446.469 9 82.356 448.243 10 85.772 450.324 11 88.993 452.696 12 91.993 455.342 13 94.750 458.240 14 97.242 461.369 15 99.451 464.703 16 101.359 468.219 17 102.952 471.888 18 103.001 472.035 • Circle Center At X - 60.354 ; Y 488.187 and Radius = 45.603 Factor of Safety *** 1.024 *** **** END OF GSTABL7 OUTPUT **** Trinity River Siphon - West Side-South View - Rapid Drawdown-2 - Plate CA 565 c:lprogram files1g72swVO2007-1-O.pl2 Run By:GREGORY GEOTECHNICAL-MAD/GHG # FS Soil Soil Total Saturated Cohe0ion Friction Pore Pre$sure Piez a 1.166 Desc. Type Unit Wt Unit Wt Inter$ept Angle Pressure Coniptant Surface b 1.167 Ncj (pcf) (pcf) (p4f) (deg) Param. (psf) No. c 1.170 CL Clay 1, 125.0 132.0 432.0 26.0 C 0.00 Q.0 W1 d 1.171 Sand 2: 110.0 120.0 0.0 34.0 0.00 Oro W1 e 1.174 Shale 3? 130.0 140.0 50a.0 28.0 0.00 Oro W1 f 1.176 g 1.178 h 1.180 i 1.180 i ------------------------------ g 6 7 5 1 1 1 sr< ------------------------i------ - -- ; 446 ----------i------------------ - ---------- W 446 -------------------------------- 2 3 405 0 40 80 120 160 200 240 GSTABL7 v.2 FSmin=1.165 Safety Factors Are Calculated By The Modified Bishop Method GSTABL7 C:\Program Files\G72SW\r02007-1-rl.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.004, June 2003 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, -- Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. = Analysis Run Date: Time of Run: Run By: GREGORY GEOTECHNICAL - MAD/GHG Input Data Filename: C:\Program Files\G72SW\r02007-1-rl.in Output Filename: C:\Program Files\G72SW\r02007-1-rl.OUT Unit System: English Plotted Output Filename: C:\Program Files\G72SW\r02007-1-rl.PLT PROBLEM DESCRIPTION: Trinity River Siphon - West Side-South View - Rapid Drawdown-2 - Plate C.4 J BOUNDARY COORDINATES 7 Top Boundaries 9 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.00 444.00 32.50 442.00 2 2 32.50 442.00 58.00 444.00 2 3 58.00 444.00 63.00 447.00 2 4 63.00 447.00 100.00 472.00 1 5 100.00 472.00 185.00 473.00 1 6 185.00 473.00 218.00 474.00 1 7 218.00 474.00 240.00 475.00 1 = 8 63.00 447.00 240.00 447.00 2 9 0.00 425.00 240.00 428.00 3 User Specified Y-Origin = 405.00(ft) Default X-Plus Value - 0.00(ft) _ Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 3 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 125.0 132.0 432.0 26.0 0.00 0.0 1 2 110.0 120.0 0.0 34.0 0.00 0.0 1 3 130.0 140.0 500.0 28.0 0.00 0.0 1 * CURVED PHI PARAMETERS 1 Soil Type(s) Assigned Curved Phi Envelope Properties Soil Type 1: Specified Critical Effective Normal Stress = 500.00(psf) Coefficient a = 6.07 Coefficient b = 0.7584 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf) Piezometric Surface No. 1 Specified by 4 Coordinate Points Pore Pressure Inclination Factor = 0.00 Point X-Water Y-Water No. (ft) (ft) 1 0.00 447.00 2 63.00 447.00 3 80.00 458.00 4 240.00 458.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 1 Surface(s) Initiate(s) From Each Of 500 Points Equally Spaced Along The Ground Surface Between X = 40.00(ft) C:\Program Files\G72SW\r02007-1-rl.OUT Page 2 _ and X = 58.00(ft) Each Surface Terminates Between X = 95.00(ft) and X = 125.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 4.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Total Number of Trial Surfaces Attempted = 500 Number of Trial Surfaces With Valid FS = 500 Statistical Data On All Valid FS Values: FS Max = 1.984 FS Min - 1.165 FS Ave = 1.513 Standard Deviation = 0.220 Coefficient of Variation = 14.53 % Failure Surface Specified By 18 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 50.497 443.412 2 54.326 442.254 3 58.250 441.481 4 62.232 441.102 5 66.232 441.119 6 70.211 441.533 7 74.129 442.339 8 77.947 443.530 9 81.629 445.093 10 85.138 447.014 11 88.439 449.273 12 91.499 451.849 13 94.289 454.715 14 96.781 457.844 15 98.951 461.205 16 100.776 464.764 17 102.240 468.486 18 103.244 472.038 Circle Center At X = 64.060 ; Y = 481.328 ; and Radius = 40.269 Factor of Safety *** 1.165 *** Individual data on the 23 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load -- No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 3.8 335.0 824.0 1040.2 0. 0. 0.0 0.0 0.0 2 3.7 865.9 723.1 1193.6 0. 0. 0.0 0.0 0.0 3 0.3 77.2 53.3 87.5 0. 0. 0.0 0.0 0.0 .� 4 4.0 1936.8 479.6 1424.8 0. 0. 0.0 0.0 0.0 5 0.8 522.0 12.9 282.5 0. 0. 0.0 0.0 0.0 6 3.2 2692.7 0.0 985.8 0. 0. 0.0 0.0 0.0 7 4.0 4483.2 0.0 1592.7 0. 0. 0.0 0.0 0.0 8 3.9 5488.9 0.0 1934.9 0. 0. 0.0 0.0 0.0 9 3.8 6195.0 0.0 2199.6 0. 0. 0.0 0.0 0.0 10 2.1 3608.5 0.0 1311.5 0. 0. 0.0 0.0 0.0 11 1.6 3017.1 0.0 1463.7 0. 0. 0.0 0.0 0.0 12 3.5 6658.7 0.0 2961.6 0. 0. 0.0 0.0 0.0 13 0.0 50.2 0.0 20.2 0. 0. 0.0 0.0 0.0 14 3.3 6387.6 0.0 2460.1 0. 0. 0.0 0.0 0.0 15 3.1 5768.1 0.0 1856.7 0. 0. 0.0 0.0 0.0 16 2.8 4945.6 0.0 1177.6 0. 0. 0.0 0.0 0.0 17 2.5 3987.3 0.0 429.4 0. 0. 0.0 0.0 0.0 18 0.1 150.3 0.0 0.9 0. 0. 0.0 0.0 0.0 19 2.1 2842.1 0.0 0.0 0. 0. 0.0 0.0 0.0 20 1.0 1235.2 0.0 0.0 0. 0. 0.0 0.0 0.0 - 21 0.8 776.2 0.0 0.0 0. 0. 0.0 0.0 0.0 22 1.5 986.7 0.0 0.0 0. 0. 0.0 0.0 0.0 23 1.0 222.0 0.0 0.0 0. 0. 0.0 0.0 0.0 C:\Program Files\G72SW\r02007-1-rl.OUT Page 3 Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 47.900 443.208 2 51.709 441.988 3 55.620 441.146 4 59.593 440.688 5 63.593 440.620 6 67.580 440.941 7 71.516 441.650 8 75.365 442.738 9 79.090 444.197 10 82.655 446.011 .r 11 86.026 448.164 12 89.171 450.635 13 92.061 453.401 14 94.668 456.435 15 96.966 459.709 16 98.935 463.191 17 100.555 466.848 18 101.811 470.646 19 102.122 472.025 - Circle Center At X = 62.293 ; Y = 481.609 and Radius 41.010 Factor of Safety *** 1.167 *** Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 45.230 442.998 2 49.035 441.763 3 52.935 440.875 4 56.899 440.341 5 60.895 440.166 6 64.891 440.351 7 68.854 440.894 8 72.752 441.792 9 76.554 443.036 10 80.228 444.617 11 83.745 446.522 12 87.076 448.736 13 90.196 451.240 14 93.077 454.015 15 95.697 457.038 16 98.034 460.283 17 100.071 463.726 18 101.789 467.338 19 103.176 471.090 20 103.432 472.040 Circle Center At X = 60.845 ; Y = 484.547 and Radius 44.386 Factor of Safety *** 1.170 *** Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 48.549 443.259 2 52.463 442.432 3 56.433 441.942 4 60.430 441.793 5 64.425 441.985 6 68.390 442.517 7 72.294 443.385 8 76.111 444.583 9 79.811 446.102 10 83.368 447.931 ... 11 86.756 450.057 12 89.951 452.464 13 92.929 455.135 C:\Program Files\G72SW\r02007-1-r1.OUT Page 4 14 95.668 458.050 15 98.148 461.188 16 100.352 464.526 17 102.263 468.040 18 103.868 471.704 19 103.984 472.047 Circle Center At X = 60.181 ; Y 488.650 ; and Radius 46.858 Factor of Safety *** 1.171 *** Failure Surface Specified By 17 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 53.202 443.624 2 57.050 442.530 3 60.993 441.860 4 64.986 441.621 5 68.981 441.817 6 72.932 442.444 7 76.791 443.496 8 80.514 444.960 9 84.056 446.819 10 87.375 449.050 11 90.433 451.629 12 93.194 454.523 13 95.624 457.700 14 97.696 461.122 15 99.385 464.748 16 100.671 468.535 17 101.445 472.017 Circle Center At X = 65.186 ; Y = 478.471 and Radius = 36.850 Factor of Safety *** 1.174 *** Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) y 1 47.323 443.163 2 51.081 441.793 3 54.951 440.783 4 58.900 440.143 5 62.891 439.879 6 66.889 439.992 7 70.859 440.483 8 74.765 441.345 9 78.572 442.572 10 82.247 444.153 11 85.755 446.074 12 89.067 448.316 - 13 92.153 450.862 14 94.985 453.687 15 97.537 456.767 16 99.788 460.074 17 101.716 463.578 18 103.305 467.249 19 104.541 471.053 20 104.765 472.056 Circle Center At X = 63.692 ; Y = 482.165 and Radius = 42.299 Factor of Safety *** 1.176 *** Failure Surface Specified By 17 Coordinate Points Point X-Surf Y-Surf -� No. (ft) (ft) 1 50.605 443.420 2 54.453 442.328 3 58.397 441.659 4 62.390 441.423 5 66.385 441.622 6 70.335 442.253 C:\Program Files\G72SW\r02007-1-rl.OUT Page 5 7 74.193 443.309 8 77.914 444.777 9 81.453 446.641 10 84.769 448.878 11 87.822 451.462 12 90.577 454.362 13 93.001 457.544 14 95.066 460.970 15 96.746 464.600 16 98.022 468.391 17 98.608 471.059 Circle Center At X = 62.563 ; Y 478.218 and Radius = 36.796 Factor of Safety _ *** 1.178 *** Failure Surface Specified By 17 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 55.186 443.779 2 59.097 442.941 3 63.072 442.494 4 67.072 442.441 5 71.057 442.783 6 74.989 443.518 7 78.830 444.637 8 82.541 446.129 9 86.086 447.981 10 89.432 450.174 11 92.544 452.686 12 95.393 455.494 13 97.951 458.569 14 100.193 461.882 15 102.097 465.400 16 103.644 469.089 17 104.555 472.054 Circle Center At X = 65.606 ; Y = 482.873 and Radius = 40.459 4 Factor of Safety *** 1.180 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 42.092 442.752 2 45.901 441.532 3 49.797 440.623 4 53.753 440.032 5 57.744 439.764 6 61.744 439.819 7 65.726 440.197 8 69.664 440.896 9 73.533 441.911 10 77.307 443.236 11 80.962 444.862 12 84.473 446.778 13 87.818 448.972 14 90.974 451.429 15 93.922 454.133 16 96.641 457.067 17 99.114 460.211 18 101.324 463.544 19 103.258 467.046 20 104.902 470.693 -- 21 105.391 472.063 Circle Center At X = 59.065 ; Y = 489.165 and Radius 49.419 Factor of Safety *** 1.180 *** Failure Surface Specified By 18 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) C:\Program Files\G72SW\r02007-1-rl.OUT Page 6 1 54.537 443.728 2 58.446 442.878 3 62.417 442.398 4 66.415 442.291 5 70.406 442.559 6 74.355 443.199 7 78.226 444.206 8 81.986 445.571 9 85.601 447.282 10 89.041 449.324 11 92.274 451.679 12 95.273 454.326 13 98.011 457.242 14 100.464 460.402 15 102.611 463.777 16 104.432 467.338 17 105.912 471.054 18 106.210 472.073 Circle Center At X - 65.562 ; Y 484.903 and Radius = 42.625 Factor of Safety *** 1.182 *** **** END OF GSTABL7 OUTPUT **** Trinity River Siphon - East Side-North View - Long Term - Plate C.5 c:Nprogram filesXg72swk02007-2.pl2 Run By:GREGORY GEOTECHNICAL-MAD/GHG 565 # FS Soil Sail Total Saturated Coh4sion Friction Pore Pre$sure Piez a 1.581 Desc. Ty0e Unit Wt Unit Wt Interpept Angle Pressure Constant Surface b 1.583 NO. (pcf) (pcf) (ptf) (deg) Param. (Osf) No. c 1.586 CH Clay 1; 125.0 132.0 4322.0 22.0 C 0.00 0.0 W1 d 1.587 CL Clay 2 125.0 132.0 432.0 26.0 C 0.00 0.0 W1 e 1.588 Sand 31 110.0 120.0 030 34.0 0.00 0.0 W1 f 1.5881 Shale 4 130.0 140.0 500.0 28.0 0.00 0.0 W1 g 1.592 h 1.593 i 1.597 525 -r -1.598 ------------------ ---------------------------------- --------------------------------- --------------------------------- a i 12 la--- - ;- -------- • - -- - -- - - ---------------- -------- '- 485 6 7 8 1�1 { --- 5 1 1 1 1 4 1 13 2 3 2 -------------;- — — — — — — — —,— ----------- ----- — — — — — — — — — — — — — —--------------------T------------------------445 - 1-------------- - -------- ----------------------- --------------------- ---------------- 14--------- ----- 3 3 IS 405 1 1 1 1 0 40 80 120 160 200 240 GSTABL7 v.2 FSmin=1.581 GSTA Safety Factors Are Calculated By The Modified Bishop Method BL7 C:\Program Files\G72SW\r02007-2.0UT Page 1 GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.004, June 2003 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ********************************************************************************* Analysis Run Date: Time of Run: Run By: GREGORY GEOTECHNICAL - MAD/GHG Input Data Filename: C:\Program Files\G72SW\r02007-2.in Output Filename: C:\Program Files\G72SW\r02007-2.0UT Unit System: English Plotted Output Filename: C:\Program Files\G72SW\r02007-2.PLT PROBLEM DESCRIPTION: Trinity River Siphon - East Side-North _ View - Long Term - Plate C.5 BOUNDARY COORDINATES 12 Top Boundaries 15 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.00 444.00 32.50 443.00 3 2 32.50 443.00 55.00 444.00 3 3 55.00 444.00 89.00 463.00 2 4 89.00 463.00 104.00 471.00 1 5 104.00 471.00 118.00 478.00 1 6 118.00 478.00 146.00 479.00 1 7 146.00 479.00 154.00 479.80 1 8 154.00 479.80 158.00 482.00 1 9 158.00 482.00 162.00 483.00 1 10 162.00 483.00 166.00 484.00 1 11 166.00 484.00 170.00 485.00 1 12 170.00 485.00 240.00 486.00 1 13 89.00 463.00 240.00 463.00 2 14 55.00 444.00 240.00 444.00 3 15 0.00 425.00 240.00 425.00 4 User Specified Y-Origin = 405.00(ft) Default X-Plus Value - 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 125.0 132.0 432.0 22.0 0.00 0.0 1 2 125.0 132.0 432.0 26.0 0.00 0.0 1 3 110.0 120.0 0.0 34.0 0.00 0.0 1 4 130.0 140.0 500.0 28.0 0.00 0.0 1 CURVED PHI PARAMETERS 2 Soil Type(s) Assigned Curved Phi Envelope Properties Soil Type 1: Specified Critical Effective Normal Stress = 25000.00(psf) Coefficient a 6.07 Coefficient b 0.7366 Soil Type 2: Specified Critical Effective Normal Stress = 25000.00(psf) Coefficient a = 6.07 Coefficient b = 0.7545 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf) Piezometric Surface No. 1 Specified by 2 Coordinate Points Pore Pressure Inclination Factor = 0.00 Point X-Water Y-Water C:\Program Files\G72SW\r02007-2.OUT Page 2 No. (ft) (ft) 1 0.00 448.00 2 240.00 448.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 1 Surface(s) Initiates) From Each Of 500 Points Equally Spaced Along The Ground Surface Between X = 32.50(ft) and X = 55.00(ft) Each Surface Terminates Between X = 108.00(ft) and X = 142.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Total Number of Trial Surfaces Attempted = 500 Number of Trial Surfaces With Valid FS = 500 Statistical Data On All Valid FS Values: _ FS Max = 2.529 FS Min = 1.581 FS Ave = 1.906 Standard Deviation = 0.219 Coefficient of Variation 11.50 % Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) - 1 35.476 443.132 2 40.205 441.508 3 45.041 440.241 4 49.959 439.337 - 5 54.930 438.802 6 59.928 438.638 7 64.923 438.848 8 69.889 439.428 9 74.799 440.377 10 79.623 441.689 11 84.337 443.357 12 88.914 445.371 13 93.327 447.720 14 97.554 450.391 15 101.570 453.370 16 105.353 456.639 17 108.882 460.181 18 112.137 463.976 19 115.101 468.003 20 117.757 472.240 21 120.089 476.662 22 120.714 478.097 Circle Center At X - 59.620 ; Y = 505.654 and Radius = 67.022 Factor of Safety *** 1.581 *** Individual data on the 28 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 4.7 520.4 1406.8 1772.1 0. 0. 0.0 0.0 0.0 2 4.8 1494.9 1374.6 2223.2 0. 0. 0.0 0.0 0.0 3 4.9 2288.5 1331.0 2561.9 0. 0. 0.0 0.0 0.0 4 5.0 2873.7 1277.3 2786.4 0. 0. 0.0 0,0 0.0 S 0.1 43.4 17.4 40.0 0. 0. 0.0 0.0 0.0 6 4.9 4018.5 924.0 2855.4 0. 0. 0.0 0.0 0.0 7 5.0 5882.5 0.0 2888.2 0. 0. 0.0 0.0 0.0 8 5.0 7340.3 0.0 2765.0 0. 0. 0.0 0.0 0.0 9 4.9 8498.7 0.0 2526.3 0. 0. 0.0 0.0 0.0 10 4.8 9338.6 0.0 2173.7 0. 0. 0.0 0.0 0.0 11 4.7 9851.3 0.0 1708.9 0. 0. 0.0 0.0 0.0 C:\Program Files\G72SW\r02007-2.OUT Page 3 12 1.5 3168.2 0.0 430.8 0. 0. 0.0 0.0 0.0 13 3.1 6844.7 0.0 703.8 0. 0. 0.0 0.0 0.0 14 0.1 191.3 0.0 15.9 0. 0. 0.0 0.0 0.0 15 4.3 9556.1 0.0 438.0 0. 0. 0.0 0.0 0.0 16 0.4 974.3 0.0 4.6 0. 0. 0.0 0.0 0.0 17 3.8 8208.3 0.0 0.0 0. 0. 0.0 0.0 0.0 18 4.0 8409.7 0.0 0.0 0. 0. 0.0 0.0 0.0 19 2.4 4839.5 0.0 0.0 0. 0. 0.0 0.0 0.0 20 1.4 2584.6 0.0 0.0 0. 0. 0.0 0.0 0.0 21 3.5 6241.2 0.0 0.0 0. 0. 0.0 0.0 0.0 22 2.4 3764.2 0.0 0.0 0. 0. 0.0 0.0 0.0 23 0.8 1190.4 0.0 0.0 0. 0. 0.0 0.0 0.0 24 3.0 3637.9 0.0 0.0 0. 0. 0.0 0.0 0.0 25 2.7 2354.5 0.0 0.0 0, 0. 0.0 0.0 0.0 26 0.2 166.4 0.0 0.0 0. 0. 0.0 0.0 0.0 27 2.1 876.3 0.0 0.0 0. 0. 0.0 0.0 0.0 28 0.6 55.2 0.0 0.0 0. 0. 0.0 0.0 0.0 Failure Surface Specified By 23 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 34.168 443.074 2 38.858 441.341 3 43.659 439.942 4 48.546 438.885 5 53.495 438.175 6 58.482 437.816 7 63.482 437.810 8 68.470 438.155 9 73.421 438.852 10 78.311 439.896 11 83.115 441.282 12 87.810 443.003 13 92.371 445.051 14 96.777 447.415 = 15 101.005 450.084 16 105.034 453.045 17 108.845 456.282 18 112.418 459.779 19 115.735 463.520 20 118.781 467.486 21 121.540 471.656 22 123.997 476.010 23 125.062 478.252 ' Circle Center At X - 61.076 ; Y = 508.654 and Radius = 70.885 Factor of Safety *** 1.583 *** Failure Surface Specified By 22 Coordinate Points r Point X-Surf Y-Surf No. (ft) (ft) 1 38.542 443.269 2 43.380 442.007 3 48.291 441.068 4 53.254 440.456 5 58.246 440.173 6 63.246 440.220 7 68.231 440.598 8 73.181 441.304 9 78.074 442.335 10 82.887 443.688 _ 11 87.601 445.355 12 92.194 447.330 13 96.647 449.605 14 100.940 452.169 15 105.054 455.010 16 108.971 458.117 17 112.674 461.477 18 116.148 465.073 C:\Program Files\G72SW\r02007-2.OUT Page 4 19 119.376 468.892 20 122.345 472.915 21 125.041 477.125 22 125.674 478.274 Circle Center At X = 60.035 ; Y = 515.715 ; and Radius = 75.567 Factor of Safety *** 1.586 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 41.924 443.419 2 46.677 441.867 3 51.533 440.678 4 56.466 439.861 5 61.447 439.419 6 66.446 439.356 7 71.436 439.671 8 76.388 440.363 9 81.274 441.427 10 86.064 442.858 11 90.733 444.648 _ 12 95.253 446.786 13 99.598 449.259 14 103.744 452.055 15 107.666 455.156 16 111.342 458.545 17 114.752 462.202 18 117.874 466.107 19 120.693 470.237 20 123.190 474.569 21 124.956 478.248 Circle Center At X = 64.784 ; Y = 505.361 and Radius 66.026 Factor of Safety *** 1.587 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 39.940 443.331 2 44.663 441.689 3 49..505 440.444 4 54.434 439.605 5 59.416 439.177 6 64.416 439.163 i 7 69.400 439.563 8 74.334 440.374 9 79.183 441.591 10 83.915 443.206 11 88.497 445.207 12 92.898 447.581 13 97.087 450.311 14 101.035 453.379 15 104.716 456.763 16 108.103 460.440 17 111.175 464.386 18 113.909 468.572 19 116.287 472.970 20 118.293 477.550 21 118.452 478.016 Circle Center At X = 62.087 ; Y = 499.433 and Radius 60.316 Factor of Safety *** 1.588 *** Failure Surface Specified By 23 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 32.635 443.006 2 37.435 441.606 3 42.315 440.514 C:\Program Files\G72SW\r02007-2.OUT Page 5 _ 4 47.253 439.733 5 52.231 439.266 6 57.229 439.117 7 62.226 439.284 8 67.203 439.768 ' 9 72.139 440.566 10 77.014 441.676 11 81.809 443.092 12 86.505 444.810 13 91.082 446.821 14 95.523 449.119 15 99.809 451.694 16 103.923 454.535 17 107.849 457.632 18 111.571 460.971 19 115.073 464.539 20 118.342 468.323 _ 21 121.365 472.305 22 124.129 476.472 23 125.156 478.256 Circle Center At X = 57.091 ; Y = 517.948 and Radius = 78.831 Factor of Safety *** 1.588 *** Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 33.853 443.060 2 38.556 441.364 3 43.374 440.028 4 48.280 439.059 5 53.244 438.463 6 58.239 438.243 7 63.237 438.400 8 68.208 438.934 9 73.125 439.842 10 77.960 441.117 11 82.684 442.754 12 87.272 444.742 13 91.696 447.071 14 95.933 449.727 15 99.957 452.695 16 103.745 455.958 17 107.277 459.497 = 18 110.531 463.293 19 113.491 467.323 20 116.137 471.565 21 118.456 475.995 - 22 119.341 478.048 Circle Center At X - 58.654 ; Y = 504.395 and Radius 66.159 Factor of Safety *** 1.592 *** Failure Surface Specified By 23 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 32.861 443.016 2 37.683 441.694 3 42.577 440.670 4 47.524 439.946 5 52.506 439.526 6 57.505 439.410 7 62.501 439.600 8 67.477 440.095 9 72.413 440.893 10 77.291 441.991 11 82.093 443.385 12 86.800 445.069 13 91.397 447.037 C:\Program Files\G72SW\r02007-2.OUT Page 6 _ 14 95.864 449.283 15 100.186 451.797 16 104.346 454.571 17 108.329 457.593 18 112.120 460.853 19 115.705 464.339 20 119.071 468.036 21 122.204 471.933 22 125.093 476.013 23 126.514 478.304 Circle Center At X - 56.893 ; Y = 521.244 and Radius = 81.836 Factor of Safety *** 1.593 *** Failure Surface Specified By 23 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 34.980 443.110 2 39.833 441.909 3 44.750 440.997 4 49.711 440.377 5 54.700 440.053 6 59.700 440.024 7 64.693 440.291 8 69.661 440.854 9 74.588 441.710 10 79.455 442.856 11 84.245 444.288 12 88.943 446.001 13 93.530 447.989 14 97.992 450.245 15 102.313 452.762 16 106.477 455.530 17 110.470 458.539 18 114.277 461.780 19 117.886 465.240 20 121.284 468.908 21 124.459 472.771 22 127.399 476.815 23 128.396 478.371 Circle Center At X = 57.684 ; Y = 524.417 and Radius = 84.417 Factor of Safety *** 1.597 *** Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 45.260 443.567 2 49.983 441.924 •- 3 54.829 440.694 4 59.763 439.885 5 64.749 439.504 6 69.748 439.553 �. 7 74.725 440.033 8 79.643 440.939 9 84.464 442.265 10 89.153 444.001 11 93.675 446.134 12 97.997 448.648 13 102.086 451.525 14 105.913 454.743 15 109.448 458.279 -' 16 112.666 462.106 17 115.543 466.195 18 118.057 470.517 19 120.190 475.039 20 121.330 478.119 Circle Center At X = 66.676 ; Y = 497.431 and Radius = 57.965 Factor of Safety C:\Program Files\G72SW\r02007-2.OUT Page 7 T *** 1.598 *** **** END OF GSTABL7 OUTPUT **** Trinity River Siphon - East Side-North View - Rapid Drawdown-1 - Plate CA 565 c:lprogram files%g72sW%r02007 2-r.pl2 Run B)r GREGORY GEOTECHNICAL-MAD/GHG # FS Soil Sail Total Saturated Coh$sion Friction Pore Pm6ure Piez. a 1.141 Desc. Ty0e Unit Wt Unit Wt Interpept Angle Pressure Constant Surface b 1.145 NO. (pcf) (pcf) (ptf) (deg) Param. (Osf) No. c 1.146 CH Clay 1; 125.0 132.0 432.0 22.0 C 0.00 0.0 W1 d 1.150 CL Clay 2 125.0 132.0 432.0 26.0 C 0.00 0.0 W1 e 1.151 Sand 3 110.0 120.0 0.0 34.0 0.00 0.0 W1 f 1.1551 Shale 4; 130.0 140.0 500.0 28.0 0.00 0.0 W1 g 1.155 h 1.159 i 1.163 526 j 1:t65 ------ - ,- - -- - -- --- - -- -- - --- - 1gal 12 ------------- --- --- ---- - - -485 ----------------- ---------------- ---- --------------- 8' 1 1 - ---- ------- 5 1 1 1 4 1 13 2 3 2 -----------------------, 445 1 1--------------------- ------------------=- - - ------------------=--- -- - --- 14--------- --------------------------------- --------------------------- -- - 3 3 IS 4 405 0 40 80 120 160 200 240 GSTABL7 v.2 FSmin=1.141 Safety Factors Are Calculated By The Modified Bishop Method GSTABL7 C:\Program Files\G72SW\r02007-2-r.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.004, June 2003 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, .Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ********************************************************************************* Analysis Run Date: Time of Run: Run By: GREGORY GEOTECHNICAL - MAD/GHG Input Data Filename: C:\Program Files\G72SW\r02007-2-r.in Output Filename: C:\Program Files\G72SW\r02007-2-r.OUT Unit System: English Plotted Output Filename: C:\Program Files\G72SW\r02007-2-r.PLT PROBLEM DESCRIPTION: Trinity River Siphon - East Side-North View - Rapid Drawdown-1 - Plate C.6 BOUNDARY COORDINATES 12 Top Boundaries 15 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.00 444.00 32.50 443.00 3 2 32.50 443.00 55.00 444.00 3 3 55.00 444.00 89.00 463.00 2 4 89.00 463.00 104.00 471.00 1 5 104.00 471.00 118.00 478.00 1 6 118.00 478.00 146.00 479.00 1 7 146.00 479.00 154.00 479.80 1 = 8 154.00 479.80 158.00 482.00 1 9 158.00 482.00 162.00 483.00 1 10 162.00 483.00 166.00 484.00 1 11 166.00 484.00 170.00 485.00 1 12 170.00 485.00 240.00 486.00 1 13 89.00 463.00 240.00 463.00 2 14 55.00 444.00 240.00 444.00 3 15 0.00 425.00 240.00 425.00 4 User Specified Y-Origin = 405.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil ` Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 125.0 132.0 432.0 22.0 0.00 0.0 1 - 2 125.0 132.0 432.0 26.0 0.00 0.0 1 3 110.0 120.0 0.0 34.0 0.00 0.0 1 4 130.0 140.0 500.0 28.0 0.00 0.0 1 CURVED PHI PARAMETERS 2 Soil Type(s) Assigned Curved Phi Envelope Properties Soil Type 1: Specified Critical Effective Normal Stress = 20000.00(psf) Coefficient a = 6.07 Coefficient b = 0.7317 Soil Type 2: Specified Critical Effective Normal Stress = 20000.00(psf) Coefficient a = 6.07 Coefficient b = 0.7498 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf) Piezometric Surface No. 1 Specified by 6 Coordinate Points Pore Pressure Inclination Factor = 0.00 Point X-Water Y-Water C:\Program Files\G72SW\r02007-2-r.OUT Page 2 No. (ft) (ft) 1 0.00 448.00 2 61.00 448.00 3 118.00 478.00 4 154.00 480.00 5 170.00 485.00 6 240.00 485.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 1 Surface(s) Initiate(s) From Each Of 500 Points Equally Spaced Along The Ground Surface Between X = 32.50(ft) and X = 55.00(ft) Each Surface Terminates Between X = 108.00(ft) and X = 160.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(ft) 5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are 'Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Total Number of Trial Surfaces Attempted 500 Number of Trial Surfaces With Valid FS = 500 Statistical Data On All Valid FS Values: FS Max = 1.951 FS Min - 1.141 FS Ave = 1.472 ' Standard Deviation - 0.209 Coefficient of Variation 14.20 % Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 45.035 443.557 2 49.769 441.949 3 54.609 440.693 4 59.527 439.794 5 64.499 439.259 6 69.496 439.090 7 74.492 439.287 8 79.460 439.850 9 84.374 440.776 10 89.206 442.060 11 93.931 443.695 12 98.524 445.672 13 102.959 447.980 14 107.213 450.607 15 111.263 453.539 16 115.088 456.760 17 118.665 460.253 18 121.977 463.999 19 125.006 467.977 20 127.734 472.167 21 130.148 476.546 22 131.030 478.465 Circle Center At X = 69.304 ; Y = 507.148 and Radius = 68.064 Factor of Safety *** 1.141 *** Individual data on the 29 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) ' 1 4.7 516.6 1282.7 1637.0 0. 0. 0.0 0.0 0.0 2 4.8 1483.4 1246.9 2083.9 0. 0. 0.0 0.0 0.0 3 0.4 156.5 97.9 182.2 0. 0. 0.0 0.0 0.0 4 4.5 2816.4 885.1 2237.9 0. 0. 0.0 0.0 0.0 S 1.5 1328.9 111.4 765.7 0. 0. 0.0 0.0 0.0 6 3.5 3875.6 0.0 1629.0 0. 0. 0.0 0.0 0.0 7 5.0 7241.1 0.0 2927.5 0. 0. 0.0 0.0 0.0 C:\Program Files\G72SW\r02007-2-r.OUT Page 3 �. 8 5.0 9047.0 0.0 3566.6 0. 0. 0.0 0.0 0.0 9 5.0 10572.9 0.0 4114.3 0. 0. 0.0 0.0 0.0 10 4.9 11788.9 0.0 4567.7 0. 0. 0.0 0.0 0.0 11 4.6 12114.5 0.0 4708.2 0. 0. 0.0 0.0 0.0 12 0.2 559.9 0.0 216.2 0. 0. 0.0 0.0 0.0 13 0.3 801.5 0.0 316.4 0. 0. 0.0 0.0 0.0 14 4.4 12378.8 0.0 4866.0 0. 0. 0.0 0.0 0.0 15 0.7 2029.4 0.0 817.1 0. 0. 0.0 0.0 0.0 16 3.9 11247.7 0.0 4523.2 0. 0. 0.0 0.0 0.0 17 4.4 12976.2 0.0 5397.2 0. 0. 0.0 0.0 0.0 18 1.0 3042.8 0.0 1318.4 0. 0. 0.0 0.0 0.0 19 3.2 9297.6 0.0 4034.6 0. 0. 0.0 0.0 0.0 20 4.1 11381.2 0.0 5207.8 0. 0. 0.0 0.0 0.0 21 3.8 10195.7 0.0 4962.4 0. 0. 0.0 0.0 0.0 22 2.9 7253.8 0.0 3789.1 0. 0. 0.0 0.0 0.0 23 0.7 1588.1 0.0 1046.5 0. 0. 0.0 0.0 0.0 24 2.4 5270.8 0.0 3758.6 0. 0. 0.0 0.0 0.0 25 0.9 1705.1 1.4 1219.0 0. 0. 0.0 0.0 0.0 26 3.0 4880.2 13.4 3831.1 0. 0. 0.0 0.0 0.0 27 2.7 2963.0 23.9 2610.5 0. 0. 0.0 0.0 0.0 28 2.4 1285.5 30.8 1322.4 0. 0. 0.0 0.0 0.0 29 0.9 109.8 13.5 156.9 0. 0. 0.0 0.0 0.0 " 'Failure Surface Specified By 23 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 38.632 443.273 2 43.471 442.011 3 48.377 441.047 4 53.332 440.383 5 58.319 440.021 6 63.319 439.964 7 68.313 440.211 8 73.282 440.762 9 78.209 441.613 10 83.075 442.764 11 87.862 444.208 12 92.552 445.940 13 97.128 447.955 14 101.573 450.245 = 15 105.871 452.801 16 110.005 455.614 17 113.960 458.673 18 117.721 461.967 19 121.275 465.483 20 124.609 469.210 21 127.710 473.132 22 130.566 477.236 23 131.321 478.476 Circle Center At X = 61.759 ; Y 522.078 and Radius = 82.129 Factor of Safety *** 1.145 *** Failure Surface Specified By 24 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 34.213 443.076 2 38.903 441.343 3 43.696 439.919 4 48.572 438.812 5 53.510 438.026 6 58.489 437.564 - 7 63.487 437.428 8 68.483 437.620 9 73.456 438.137 10 78.385 438.979 11 83.248 440.140 12 88.025 441.617 13 92.695 443.403 C:\Program Files\G72SW\r02007-2-r.OUT Page 4 14 97.239 445.490 15 101.636 447.870 16 105.868 450.532 17 109.918 453.465 18 113.767 456.656 19 117.399 460.092 20 120.799 463.758 21 123.953 467.639 22 126.846 471.717 23 129.466 475.975 24 130.777 478.456 Circle Center At X = 63.057 ; Y - 513.819 and Radius = 76.397 Factor of Safety *** 1.146 *** Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 51.663 443.852 2 56.560 442.839 3 61.514 442.169 4 66.504 441.845 5 71.504 441.867 6 76.490 442.237 7 81.439 442.952 8 86.326 444.009 9 91.128 445.402 10 95.821 447.126 11 100.384 449.171 12 104.794 451.528 13 109.029 454.185 14 113.070 457.130 15 116.896 460.348 16 120.490 463.824 17 123.834 467.542 18 126.912 471.482 19 129.709 475.627 20 131.357 478.477 Circle Center At X = 68.685 ; Y = 513.699 and Radius = 71.891 Factor of Safety *** 1.150 *** Failure Surface Specified By 24 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 'R 1 32.635 443.006 2 37.435 441.606 3 42.309 440.491 4 47.241 439.665 5 52.212 439.129 6 57.206 438.887 7 62.206 438.938 8 67.194 439.284 9 72.153 439.921 10 77.066 440.850 11 81.916 442.065 12 86.686 443.563 13 91.360 445.339 14 95.922 447.387 15 100.355 449.699 16 104.645 452.268 17 108.776 455.085 18 112.734 458.139 19 116.507 461.421 20 120.079 464.919 21 123.441 468.621 22 126.578 472.513 23 129.482 476.584 24 130.655 478.452 C:\Program Files\G72SW\r02007-2-r.OUT Page 5 Circle Center At X = 58.830 ; Y = 523.819 ; and Radius = 84.953 Factor of Safety *** 1.151 *** Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 55.000 444.000 2 59.917 443.096 3 64.887 442.546 4 69.883 442.353 5 74.881 442.519 6 79.853 443.042 7 84.775 443.920 8 89.622 445.149 9 94.369 446.721 10 98.990 448.629 11 103.463 450.863 12 107.765 453.412 13 111.873 456.262 14 115.766 459.399 15 119.425 462.807 16 122.831 466.468 17 125.965 470.364 18 128.812 474.474 19 131.177 478.471 Circle Center At X = 70.070 ; Y = 512.128 and Radius = 69.775 Factor of Safety *** 1.155 *** Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 42.330 443.437 2 47.082 441.885 3 51.933 440.669 4 56.856 439.798 5 61.828 439.273 6 66.825 439.099 7 71.822 439.276 8 76.794 439.803 9 81.717 440.677 10 86.567 441.894 11 91.319 443.449 12 95.950 445.333 13 100.438 447.538 14 104.760 450.051 15 108.896 452.862 16 112.823 455.956 17 116.524 459.318 18 119.981 462.931 19 123.175 466.778 20 126.091 470.839 _. 21 128.716 475.095 22 130.470 478.445 Circle Center At X - 66.808 ; Y = 510.267 and Radius = 71.172 Factor of Safety _ *** 1.155 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 41.067 443.381 T 2 45.802 441.775 3 50.649 440.548 4 55.578 439.707 5 60.558 439.257 6 65.558 439.201 7 70.546 439.539 8 75.492 440.270 C:\Program Files\G72SW\r02007-2-r.OUT Page 6 9 80.366 441.388 10 85.136 442.887 11 89.773 444.757 12 94.248 446.987 13 98.534 449.562 14 102.603 452.468 15 106.430 455.685 16 109.992 459.194 17 113.267 462.973 18 116.233 466.998 19 118.872 471.244 20 121.169 475.686 21 122.206 478.150 Circle Center At X = 63.768 ; Y 502.555 and Radius = 63.379 Factor of Safety *** 1.159 *** Failure Surface Specified By 22 Coordinate Points T Point X-Surf Y-Surf No. (ft) (ft) 1 36.152 443.162 2 41.021 442.026 3 45.951 441.192 4 50.923 440.664 5 55.919 440.444 6 60.918 440.533 7 65.902 440.930 = 8 70.852 441.634 9 75.750 442.642 10 80.575 443.950 11 85.311 445.554 12 89.939 447.447 13 94.441 449.621 14 98.801 452.070 15 103.001 454.783 16 107.026 457.749 17 110.860 460.959 18 114.488 464.399 19 117.897 468.056 20 121.074 471.917 21 124.007 475.967 22 125.465 478.267 Circle Center At X - 56.988 ; Y = 521.320 and Radius = 80.887 Factor of Safety *** 1.163 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) •- 1 40.120 443.339 2 44.843 441.697 3 49.681 440.436 4 54.605 439.563 = 5 59.582 439.084 6 64.581 439.002 7 69.571 439.317 8 74.520 440.027 9 79.397 441.129 10 84.172 442.614 11 88.813 444.474 12 93.292 446.697 13 97.580 449.268 14 101.650 452.172 15 105.477 455.391 16 109.036 458.902 17 112.304 462.686 18 115.262 466.717 19 117.891 470.971 20 120.173 475.419 C:\Program Files\G72SW\r02007-2-r.OUT Page 7 21 121.296 478.118 Circle Center At X = 63.115 ; Y 501.879 and Radius = 62.895 Factor of Safety *** 1.165 *** **** END OF GSTABL7 OUTPUT **** Trinity River Siphon - East Side-North View - Rapid Drawdown-2 - Plate C.7 c-Xprogram files\g72sw\r02007-2-r1.pl2 Run By:GREGORY GEOTECHNICAL-MAD/GHG 565 # FS Soil Sc it Total Saturated Coh4sion Friction Pore Pre$sure Piez a 1.297 Desc. Ty0e Unit Wt Unit Wt Inter�ept Angle Pressure Codstant Surface b 1.299 NO. (pcf) (pcf) (p$f) (deg) Param. (0sf) No. c 1.305 CH Clay 1; 125.0 132.0 432.0 22.0 C 0.00 Q.0 W1 d 1.308 CL Clay Z 125.0 132.0 432.0 26.0 C 0.00 0.0 W1 e 1.311 Sand 3i 110.0 120.0 0.0 34.0 0.00 0.0 W1 f 1.3171 Shale 4 130.0 140.0 500.0 28.0 0.00 0.0 W1 g 1.317 h 1.320 i 1.322 ' 525 1.322 -----------------------------------------------------•--------------------------------------------------------------------•------------------------------------------------------------------ Ea 1 14� i 12 485 is ------------------------ 5 1 1 1 4 1 13 i 3 2 1 - -- -- -� -- - 14---------- - - - --- 445 - - --1 ------- 3 3 IS 4 405 1 i 0 40 80 120 160 200 240 GSTABL7 v.2 FSmin=1.297 Safety Factors Are Calculated By The Modified Bishop Method GSTABL7 C:\Program Files\G72SW\r02007-2-rl.OUT Page 1 *** GSTABL7 *** ** GSTABL7 by Garry H. Gregory, P.E. ** ** Original Version 1.0, January 1996; Current Version 2.004, June 2003 ** (All Rights Reserved-Unauthorized Use Prohibited) ********************************************************************************* " SLOPE STABILITY ANALYSIS SYSTEM Modified Bishop, Simplified Janbu, or GLE Method of Slices. (Includes Spencer & Morgenstern-Price Type Analysis) Including Pier/Pile, Reinforcement, Soil Nail, Tieback, Nonlinear Undrained Shear Strength, Curved Phi Envelope, Anisotropic Soil, Fiber-Reinforced Soil, Boundary Loads, Water Surfaces, Pseudo-Static & Newmark Earthquake, and Applied Forces. ********************************************************************************* - Analysis Run Date: Time of Run: Run By: GREGORY GEOTECHNICAL - MAD/GHG Input Data Filename: C:\Program Files\G72SW\r02007-2-rl.in Output Filename: C:\Program Files\G72SW\r02007-2-rl.OUT Unit System: English Plotted Output Filename: C:\Program Files\G72SW\r02007-2-rl.PLT PROBLEM DESCRIPTION: Trinity River Siphon - East Side-North View - Rapid Drawdown-2 - Plate C.7 BOUNDARY COORDINATES 12 Top Boundaries 15 Total Boundaries Boundary X-Left Y-Left X-Right Y-Right Soil Type No. (ft) (ft) (ft) (ft) Below Bnd 1 0.00 444.00 32.50 443.00 3 2 32.50 443.00 55.00 444.00 3 3 55.00 444.00 89.00 463.00 2 4 89.00 463.00 104.00 471.00 1 5 104.00 471.00 118.00 478.00 1 6 118.00 478.00 146.00 479.00 1 7 146.00 479.00 154.00 479.80 1 8 154.00 479.80 158.00 482.00 1 9 158.00 4B2.00 162.00 483.00 1 10 162.00 483.00 166.00 484.00 1 11 166.00 484.00 170.00 485.00 1 12 170.00 485.00 240.00 486.00 1 13 89.00 463.00 240.00 463.00 2 14 55.00 444.00 240.00 444.00 3 15 0.00 425.00 240.00 425.00 4 User Specified Y-Origin = 405.00(ft) Default X-Plus Value = 0.00(ft) Default Y-Plus Value = 0.00(ft) ISOTROPIC SOIL PARAMETERS 4 Type(s) of Soil Soil Total Saturated Cohesion Friction Pore Pressure Piez. Type Unit Wt. Unit Wt. Intercept Angle Pressure Constant Surface No. (pcf) (pcf) (psf) (deg) Param. (psf) No. 1 125.0 132.0 432.0 22.0 0.00 0.0 1 2 125.0 132.0 432.0 26.0 0.00 0.0 1 3 110.0 120.0 0.0 34.0 0.00 0.0 1 4 130.0 140.0 500.0 2B.0 0.00 0.0 1 CURVED PHI PARAMETERS - 2 Soil Type(s) Assigned Curved Phi Envelope Properties Soil Type 1: Specified Critical Effective Normal Stress = 20000.00(psf) Coefficient a = 6.07 Coefficient b = 0.7317 Soil Type 2: Specified Critical Effective Normal Stress = 20000.00(psf) Coefficient a = 6.07 Coefficient b 0.7498 1 PIEZOMETRIC SURFACE(S) SPECIFIED Unit Weight of Water = 62.40 (pcf) Piezometric Surface No. 1 Specified by 4 Coordinate Points Pore Pressure Inclination Factor = 0.00 Point X-Water Y-Water C:\Program Files\G72SW\r02007-2-rl.OUT Page 2 No. (ft) (ft) 1 0.00 448.00 2 61.00 448.00 3 86.00 461.00 4 240.00 461.00 A Critical Failure Surface Searching Method, Using A Random Technique For Generating Circular Surfaces, Has Been Specified. 500 Trial Surfaces Have Been Generated. 1 Surface(s) Initiate(s) From Each Of 500 Points Equally Spaced Along The Ground Surface Between X = 32.50(ft) and X = 55.00(ft) Each Surface Terminates Between X = 108.00(ft) and X = 160.00(ft) Unless Further Limitations Were Imposed, The Minimum Elevation At Which A Surface Extends Is Y = 0.00(£t) 5.00(ft) Line Segments Define Each Trial Failure Surface. Following Are Displayed The Ten Most Critical Of The Trial Failure Surfaces Evaluated. They Are Ordered - Most Critical First. * * Safety Factors Are Calculated By The Modified Bishop Method Total Number of Trial Surfaces Attempted = 500 Number of Trial Surfaces With Valid FS - 500 Statistical Data On All Valid FS Values: FS Max - 2.440 FS Min = 1.297 FS Ave = 1.742 Standard Deviation = 0.297 Coefficient of Variation = 17.05 % Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 41.067 443.381 '2 45.802 441.775 3 50.649 440.548 4 55.578 439.707 5 60.558 439.257 6 65.558 439.201 7 70.546 439.539 8 75.492 440.270 9 80.366 441.388 10 85.136 442.887 11 89.773 444.757 - 12 94.248 446.987 13 98.534 449.562 14 102.603 452.468 15 106.430 455.685 = 16 109.992 459.194 17 113.267 462.973 18 116.233 466.998 19 118.872 471.244 20 121.169 475.686 21 122.206 478.150 Circle Center At X = 63.768 ; Y 502.555 and Radius = 63.379 Factor of Safety *** 1.297 *** Individual data on the 29 slices Water Water Tie Tie Earthquake Force Force Force Force Force Surcharge Slice Width Weight Top Bot Norm Tan Hor Ver Load No. (ft) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) (lbs) 1 4.7 515.9 1335.1 1691.6 0. 0. 0.0 0.0 0.0 2 4.8 1475.7 1302.2 2133.5 0. 0. 0.0 0.0 0.0 3 4.4 1945.3 1113.2 2154.4 0. 0. 0.0 0.0 0.0 - 4 0.6 306.7 158.6 301.7 0. 0. 0.0 0.0 0.0 5 5.0 3826.6 813.6 2657.6 0. 0. 0.0 0.0 0.0 6 0.4 440.2 24.4 241.3 0. 0. 0.0 0.0 0.0 7 4.6 5344.0 0.0 2229.4 0. 0. 0.0 0.0 0.0 8 5.0 7495.9 0.0 3020.0 0. 0. 0.0 0.0 0.0 9 4.9 8906.0 0.0 3523.1 0. 0. 0.0 0.0 0.0 10 4.9 9980.8 0.0 3923.2 0. 0. 0.0 0.0 0.0 C:\Program Files\G72SW\r02007-2-rl.OUT Page 3 11 4.8 10702.2 0.0 4217.6 0. 0. 0.0 0.0 0.0 12 0.9 2021.0 0.0 810.7 0. 0. 0.0 0.0 0.0 13 1.9 4545.4 0.0 2218.2 0. 0. 0.0 0.0 0.0 14 1.1 2676.9 0.0 1245.5 0. 0. 0.0 0.0 0.0 15 0.8 1886.5 0.0 852.9 0. 0. 0.0 0.0 0.0 16 4.5 10953.8 0.0 4720.0 0. 0. 0.0 0.0 0.0 17 4.3 10381.8 0.0 3970.4 0. 0. 0.0 0.0 0.0 18 4.1 9518.8 0.0 3115.3 0. 0. 0.0 0.0 0.0 19 1.4 3146.4 0.0 904.8 0. 0. 0.0 0.0 0.0 20 2.4 5255.5 0.0 1255.4 0. 0. 0.0 0.0 0.0 21 3.6 7064.1 0.0 1110.9 0. 0. 0.0 0.0 0.0 22 1.6 2805.4 0.0 134.7 0. 0. 0.0 0.0 0.0 23 1.7 2824.5 0.0 0.0 0. 0. 0.0 0.0 0.0 24 0.0 31.9 0.0 0.0 0. 0. 0.0 0.0 0.0 25 2.9 4191.1 0.0 0.0 0. 0. 0.0 0.0 0.0 26 1.8 2018.8 0.0 0.0 0. 0. 0.0 0.0 0.0 27 0.9 815.0 0.0 0.0 0. 0. 0.0 0.0 0.0 28 2.3 1322.7 0.0 0.0 0. 0. 0.0 0.0 0.0 29 1.0 157.4 0.0 0.0 0. 0. 0.0 0.0 0.0 Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 40.120 443.339 2 44.843 441.697 3 49.681 440.436 4 54.605 439.563 5 59.582 439.084 6 64.581 439.002 7 69.571 439.317 8 74.520 440.027 _ 9 79.397 441.129 10 84.172 442.614 11 88.813 444.474 12 93.292 446.697 13 97.580 449.268 14 101.650 452.172 15 105.477 455.391 16 109.036 458.902 17 112.304 462.686 18 115.262 466.717 19 117.891 470.971 20 120.173 475.419 21 121.296 478.118 Circle Center At X = 63.115 ; Y = 501.879 and Radius = 62.895 Factor of Safety *** 1.299 *** Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf x No. (ft) (ft) 1 35.521 443.134 2 40.250 441.510 3 45.082 440.224 4 49.992 439.282 5 54.957 438.689 6 59.951 438.448 7 64.950 438.560 8 69.928 439.025 9 74.861 439.840 10 79.724 441.001 11 84.494 442.503 12 89.145 444.337 13 93.655 446.496 14 98.002 448.967 15 102.163 451.739 16 106.118 454.798 17 109.847 458.129 18 113.332 461.714 I C:\Program Files\G72SW\r02007-2-rl.OUT Page 4 19 116.555 465.536 20 119.500 469.577 21 122.153 473.815 22 124.501 478.232 Circle Center At X = 60.864 ; Y = 509.225 ; and Radius = 70.783 Factor of Safety *** 1.305 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 43.186 443.475 2 47.850 441.673 3 52.649 440.267 _ 4 57.547 439.267 5 62.513 438.678 6 67.510 438.506 7 72.504 438.751 8 77.460 439.413 9 82.343 440.485 10 87.120 441.961 11 91.758 443.831 12 96.223 446.081 - 13 100.484 448.696 14 104.513 451.658 15 108.281 454.945 16 111.761 458.535 17 114.929 462.403 18 117.764 466.522 19 120.244 470.863 20 122.355 475.396 21 123.382 478.192 Circle Center At X - 67.071 ; Y = 498.373 and Radius 59.868 Factor of Safety *** 1.308 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 39.083 443.293 2 43.901 441.955 - 3 48.804 440.977 4 53.766 440.363 5 58.760 440.118 6 63.759 440.243 7 68.735 440.736 8 73.660 441.595 9 78.509 442.816 10 83.254 444.391 11 87.870 446.313 12 92.332 448.570 13 96.614 451.150 14 100.695 454.040 15 104.550 457.223 16 108.160 460.683 17 111.505 464.399 18 114.566 468.353 19 117.327 472.521 20 119.773 476.883 21 120.334 478.083 Circle Center At X = 59.579 ; Y = 507.768 and Radius = 67.655 Factor of Safety *** 1.311 *** Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 35.792 443.146 2 40.592 441.750 3 45.480 440.693 C:\Program Files\G72SW\r02007-2-rl.OUT Page 5 4 50.429 439.981 5 55.416 439.619 6 60.416 439.607 7 65.404 439.946 B 70.357 440.633 = 9 75.249 441.667 10 B0.056 443.041 11 84.755 444.748 12 89.324 446.781 f 13 93.738 449.129 14 97.977 451.781 15 102.019 454.724 16 105.845 457.943 17 109.436 461.423 18 112.774 465.145 19 115.842 469.093 20 118.627 473.246 21 121.113 477.584 22 121.372 478.120 Circle Center At X = 58.087 ; Y = 510.784 and Radius = 71.218 Factor of Safety *** 1.317 *** Failure Surface Specified By 19 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 42.239 443.433 2 46.950 441.757 3 51.793 440.514 4 56.729 439.713 5 61.716 439.363 6 66.715 439.464 7 71.685 440.018 8 76.583 441.018 9 81.372 442.458 10 86.010 444.324 11 90.461 446.603 12 94.688 449.274 13 98.655 452.317 14 102.332 455.706 - 15 105.686 459.413 16 108.692 463.409 17 111.324 467.660 18 113.561 472.132 19 115.338 476.669 Circle Center At X = 63.092 ; Y = 494.583 and Radius = 55.237 Factor of Safety *** 1.317 *** t Failure Surface Specified By 20 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 42.690 443.453 2 47.569 442.360 3 52.514 441.621 4 57.500 441.242 5 62.500 441.224 6 67.488 441.566 7 72.439 442.268 8 77.326 443.325 9 82.124 444.733 10 86.807 446.483 11 91.352 448.567 12 95.735 450.973 13 99.933 453.689 14 103.924 456.702 15 107.686 459.995 16 111.201 463.550 17 114.451 467.351 C:\Program Files\G72SW\r02007-2-rl.OUT Page 6 18 117.417 471.375 19 120.086 475.604 20 121.431 478.123 Circle Center At X = 60.262 ; Y = 510.296 ; and Radius = 69.114 Factor of Safety *** 1.320 *** Failure Surface Specified By 21 Coordinate Points Point X-Surf Y-Surf No. (ft) (ft) 1 38.993 443.289 2 43.589 441.321 3 48.340 439.760 4 53.208 438.618 5 58.156 437.904 6 63.148 437.622 7 68.146 437.775 8 73.111 438.362 9 78.007 439.379 -' 10 82.796 440.817 11 87.441 442.666 12 91.909 444.911 13 96.164 447.537 14 100.175 450.522 15 103.911 453.844 16 107.345 457.479 17 110.449 461.399 18 113.202 465.573 19 115.580 469.971 20 117.568 474.559 21 118.724 478.026 Circle Center At X = 63.887 ; Y = 495.091 and Radius = 57.474 T Factor of Safety *** 1.322 *** .Failure Surface Specified By 22 Coordinate Points Point X-Surf Y-Surf ` No. (ft) (ft) 1 42.330 443.437 2 47.082 441.885 3 51.933 440.669 4 56.856 439.798 5 61.828 439.273 6 66.825 439.099 7 71.822 439.276 8 76.794 439.803 9 81.717 440.677 10 86.567 441.894 11 91.319 443.449 12 95.950 445.333 13 100.438 447.538 14 104.760 450.051 15 108.896 452.862 16 112.823 455.956 'f 17 116.524 459.318 18 119.981 462.931 19 123.175 466.778 20 126.091 470.839 '- 21 128.716 475.095 22 130.470 478.445 Circle Center At X - 66.808 ; Y = 510.267 and Radius = 71.172 Factor of Safety *** 1.322 *** **** END OF GSTABL7 OUTPUT **** GREGEO REPORT NO. R02007 SLOPE AWAY FROM STRUCTURE 17 e I n I e• I ••d I BELOW GRADE WALL NOTE:THE SLOPE RATIO SHOWN IS FOR BACKFILL INFLUENCE ZONE ONLY AND IS NOT MEANT TO BE i NON-EXPANSIVE EARTH FILL A SAFE OR STABLE SLOPE RATIO FOR EXCAVATION BACKFILL INFLUENCE ZONE PURPOSES.THE CONTRACTOR MUST PROVIDE A d-'a SLOPE RATIO THAT WILL BE SAFE AND STABLE DURING CONSTRUCTION.ANY EXCAVATION OUTSIDE THE INFLUENCE ZONE MAY BE FILLED WITH NOW 1.6 EXPANSIVE EARTH FILL OR GENERAL EARTH FILL. I REFER TO THE EARTHWORK SECTION OF THE REPORT I G ; 1 FOR COMPACTION REQUIREMENTS. I 2 ft-MIN OF MAY BE IN SITU SOIL �(E .T IF NOT EXCAVATED GA.RY H. GREGOR „ 5714 � 3 SCHEMATIC ONLY-NOT TO SCALE-NOT FOR CONSTRUCTION . O CENSE . to0 3 GREGORYGEOTECHNICAL MINIMUM BACKFILL ZONE DETAIL Geotechnical Engineering and Consulting 2001 West 44thAvemm,Stillwater,OK 74074 �'_'!'' TRINITY RIVER SIPHON PROJECT-CITY OF FORT WORTH-VCWWTP PLATE C.8 Phone:405-747-8200 Fax 405-747 8201 FORT WORTH,TEXAS APPENDIX B COPOLYMER STOP LOG BID ALLOWANCE LETTER - (NOT INCLUDED) I • APPENDIX C EASEMENTS (NOT INCLUDED) APPENDIX D _ US COE REGIONAL PERMIT (NOT INCLUDED)